Abstract

Temperature rise and film thickness reduction are the most important factors in elastohydrodynamic lubrication (EHL). In the EHL contact area, interfacial resistances (velocity/thermal slips) induced by the molecular interaction between lubricant and solid become significant due to the large surface/volume ratio. Although the velocity slip has been investigated extensively, less attention has been paid on the thermal slip in the EHL regime. In this study, numerical simulations were conducted by applying three cases of boundary slips to surfaces under sliding/rolling contacts moving in the same direction for the Newtonian thermal EHL. We found that the coupled velocity/thermal slips lead the most significant temperature rise and film thickness reduction among the three cases. The velocity slip results in a lower temperature in the lubricant and solids, whereas the thermal slip causes a temperature rise in the entire contact area in the lubricant as the film thickness decreases simultaneously. Furthermore, the effect of thermal slip on lubrication is more dominant than that of velocity slip, which increases the entrainment velocity or slide–roll ratio.

References

1.
Björling
,
M.
, and
Shi
,
Y.
,
2019
, “
DLC and Glycerol: Superlubricity in Rolling/Sliding Elastohydrodynamic Lubrication
,”
Tribol. Lett.
,
67
(
1
), p.
23
.
2.
Sheeja
,
D.
,
Tay
,
B. K.
,
Krishnan
,
S. M.
, and
Nung
,
L. N.
,
2003
, “
Tribological Characterization of Diamond-Like Carbon (DLC) Coatings Sliding Against DLC Coatings
,”
Diamond Relat. Mater.
,
12
(
8
), pp.
1389
1395
.
3.
Evans
,
R. D.
,
Cogdell
,
J. D.
, and
Richter
,
G. A.
,
2009
, “
Traction of Lubricated Rolling Contacts Between Thin-Film Coatings and Steel
,”
Tribol. Trans.
,
52
(
1
), pp.
106
113
.
4.
Katsaros
,
K.
,
Bompos
,
D. A.
,
Nikolakopoulos
,
P. G.
, and
Theodossiades
,
S.
,
2018
, “
Thermal-Hydrodynamic Behaviour of Coated Pivoted Pad Thrust Bearings: Comparison Between Babbitt, PTFE and DLC
,”
Lubricants
,
6
(
2
), p.
50
.
5.
Wu
,
L. Y. L.
,
Ngian
,
S. K.
,
Chen
,
Z.
, and
Xuan
,
D. T. T.
,
2011
, “
Quantitative Test Method for Evaluation of Anti-Fingerprint Property of Coated Surfaces
,”
Appl. Surf. Sci.
,
257
(
7
), pp.
2965
2969
.
6.
Meng
,
X.
,
Wang
,
J.
,
Nishikawa
,
H.
, and
Nagayama
,
G.
,
2021
, “
Effects of Boundary Slips on Thermal Elastohydrodynamic Lubrication Under Pure Rolling and Opposite Sliding Contacts
,”
Tribol. Int.
,
155
, p.
106801
.
7.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
(
6649
), pp.
360
362
.
8.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H. J.
, and
Craig
,
V. S. J.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.
9.
Kapitza
,
P. L.
,
1971
, “
The Study of Heat Transfer in Helium II
,”
Helium
,
4
, pp.
114
153
.
10.
Pollack
,
G. L.
,
1969
, “
Kapitza Resistance
,”
Rev. Mod. Phys.
,
41
(
1
), pp.
48
81
.
11.
Nagayama
,
G.
,
2011
, “
Boundary Conditions and Microscale Heat Transfer at Solid-Liquid Interface
,”
J. Heat Transfer Soc. Jpn.
,
50
(
211
), pp.
29
36
.
12.
Kaneta
,
M.
,
Nishikawa
,
H.
, and
Kameishi
,
K.
,
1990
, “
Observation of Wall Slip in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
3
), pp.
447
452
.
13.
Ehret
,
P.
, and
Bauget
,
F.
,
2001
, “
Observation of Kaneta’s Dimples in Elastohydrodynamic Lubrication Contacts
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
215
(
3
), pp.
289
300
.
14.
Fu
,
Z.
,
Guo
,
F.
, and
Wong
,
P. L.
,
2007
, “
Non-Classical Elastohydrodynamic Lubricating Film Shape Under Large Slide-Roll Ratios
,”
Tribol. Lett.
,
27
(
2
), pp.
211
219
.
15.
Kalin
,
M.
,
Velkavrh
,
I.
, and
Vižintin
,
J.
,
2009
, “
The Stribeck Curve and Lubrication Design for Non-Fully Wetted Surfaces
,”
Wear
,
267
(
5
), pp.
1232
1240
.
16.
Guo
,
F.
,
Li
,
X. M.
, and
Wong
,
P. L.
,
2012
, “
A Novel Approach to Measures Slip-Length of Thin Lubricant Films Under High Pressures
,”
Tribol. Int.
,
46
(
1
), pp.
22
29
.
17.
Guo
,
F.
, and
Wong
,
P. L.
,
2016
, “
An Anomalous Elastohydrodynamic Lubrication Film: Inlet Dimple
,”
ASME J. Tribol.
,
127
(
2
), pp.
425
434
.
18.
Guo
,
F.
, and
Wong
,
P. L.
,
2004
, “
Experimental Observation of a Dimple-Wedge Elastohydrodynamic Lubricating Film
,”
Tribol. Int.
,
37
(
2
), pp.
119
127
.
19.
Ponjavic
,
A.
,
Chennaoui
,
M.
, and
Wong
,
J. S. S.
,
2013
, “
Through-Thickness Velocity Profile Measurements in an Elastohydrodynamic Contact
,”
Tribol. Lett.
,
50
(
2
), pp.
261
277
.
20.
Ponjavic
,
A.
, and
Wong
,
J. S. S.
,
2014
, “
The Effect of Boundary Slip on Elastohydrodynamic Lubrication
,”
RSC Adv.
,
4
(
40
), pp.
20821
20829
.
21.
Wang
,
P.
, and
Reddyhoff
,
T.
,
2017
, “
Wall Slip in an EHL Contact Lubricated With 1-Dodecanol
,”
Tribol. Int.
,
113
, pp.
197
205
.
22.
Zhao
,
Y.
,
Wong
,
P. L.
, and
Mao
,
J. H.
,
2018
, “
EHL Film Formation Under Zero Entrainment Velocity Condition
,”
Tribol. Int.
,
124
, pp.
1
9
.
23.
Wong
,
P. L.
,
Zhao
,
Y.
, and
Mao
,
J.
,
2018
, “
Facilitating Effective Hydrodynamic Lubrication for Zero-Entrainment-Velocity Contacts Based on Boundary Slip Mechanism
,”
Tribol. Int.
,
128
, pp.
89
95
.
24.
Wen
,
S.
, and
Zhang
,
Y.
,
2000
, “
EHL Performance of the Lubricant With Shear Strength: Part I—Boundary Slippage and Film Failure
,”
Tribol. Trans.
,
43
(
4
), pp.
700
710
.
25.
Ståhl
,
J.
, and
Jacobson
,
B. O.
,
2003
, “
A Lubricant Model Considering Wall-Slip in EHL Line Contacts
,”
ASME J. Tribol.
,
125
(
3
), pp.
523
532
.
26.
Chu
,
L. M.
,
Lin
,
J. R.
,
Li
,
W. L.
, and
Lu
,
J. M.
,
2012
, “
A Model for Line-Contact EHL Problems-Consideration of Effects of Navier-Slip and Lubricant Rheology
,”
ASME J. Tribol.
,
134
(
3
), p.
031502
.
27.
Chen
,
Q. D.
,
Jao
,
H. C.
,
Chu
,
L. M.
, and
Li
,
W. L.
,
2016
, “
Effects of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts
,”
ASME J. Tribol.
,
138
(
3
), p.
031502
.
28.
Cheng
,
H. S.
,
1965
, “
A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders
,”
ASLE Trans.
,
8
(
4
), pp.
397
410
.
29.
Guo
,
F.
,
Yang
,
P.
, and
Qu
,
S.
,
2001
, “
On the Theory of Thermal Elastohydrodynamic Lubrication at High Slide-Roll Ratios—Circular Glass-Steel Contact Solution at Opposite Sliding
,”
ASME J. Tribol.
,
123
(
4
), pp.
816
821
.
30.
Yagi
,
K.
,
Kyogoku
,
K.
, and
Nakahara
,
T.
,
2006
, “
Experimental Investigation of Effects of Slip Ratio on Elastohydrodynamic Lubrication Film Related to Temperature Distribution in Oil Films
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
220
(
4
), pp.
353
363
.
31.
Wang
,
J.
, and
Yang
,
P.
,
2003
, “
A Numerical Analysis for TEHL of Eccentric-Tappet Pair Subjected to Transient Load
,”
ASME J. Tribol.
,
125
(
4
), pp.
770
779
.
32.
Zhao
,
Y.
,
Wong
,
P. L.
, and
Mao
,
J. H.
,
2019
, “
Solving Coupled Boundary Slip and Heat Transfer EHL Problem Under Large Slide–Roll Ratio Conditions
,”
Tribol. Int.
,
133
, pp.
73
87
.
33.
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
H.
, and
Zhao
,
Z.
,
2020
, “
Slip Status in Lubricated Point-Contact Based on Layered Oil Slip Lubrication Model
,”
Tribol. Int.
,
144
, p.
106104
.
34.
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
H.
, and
Zhao
,
Z.
,
2019
, “
Layered Oil Slip Model for Investigation of Film Thickness Behaviours at High Speed Conditions
,”
Tribol. Int.
,
131
, pp.
137
147
.
35.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), pp.
1
4
.
36.
Timofeeva
,
E. V.
,
Smith
,
D. S.
,
Yu
,
W.
,
France
,
D. M.
,
Singh
,
D.
, and
Routbort
,
J. L.
,
2010
, “
Particle Size and Interfacial Effects on Thermo-Physical and Heat Transfer Characteristics of Water-Based α-SiC Nanofluids
,”
Nanotechnology
,
21
(
21
), p.
215703
.
37.
Nagayama
,
G.
,
Matsumoto
,
T.
,
Fukushima
,
K.
, and
Tsuruta
,
T.
,
2017
, “
Scale Effect of Slip Boundary Condition at Solid-Liquid Interface
,”
Sci. Rep.
,
7
(
1
), pp.
1
8
.
38.
Nagayama
,
G.
,
Kawagoe
,
M.
,
Tokunaga
,
A.
, and
Tsuruta
,
T.
,
2010
, “
On the Evaporation Rate of Ultra-Thin Liquid Film at the Nanostructured Surface: A Molecular Dynamics Study
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
59
66
.
39.
Hu
,
H.
, and
Sun
,
Y.
,
2012
, “
Effect of Nanopatterns on Kapitza Resistance at a Water-Gold Interface During Boiling: A Molecular Dynamics Study
,”
J. Appl. Phys.
,
112
(
5
), p.
053508
.
40.
Shi
,
Z.
,
Barisik
,
M.
, and
Beskok
,
A.
,
2012
, “
Molecular Dynamics Modeling of Thermal Resistance at Argon-Graphite and Argon-Silver Interfaces
,”
Int. J. Therm. Sci.
,
59
, pp.
29
37
.
41.
Barisik
,
M.
, and
Beskok
,
A.
,
2014
, “
Temperature Dependence of Thermal Resistance at the Water/Silicon Interface
,”
Int. J. Therm. Sci.
,
77
, pp.
47
54
.
42.
Pham
,
A. T.
,
Barisik
,
M.
, and
Kim
,
B. H.
,
2016
, “
Interfacial Thermal Resistance Between the Graphene-Coated Copper and Liquid Water
,”
Int. J. Heat Mass Transfer
,
97
, pp.
422
431
.
43.
Song
,
Z.
,
Cui
,
Z.
,
Cao
,
Q.
,
Liu
,
Y.
, and
Li
,
J.
,
2021
, “
Molecular Dynamics Study of Convective Heat Transfer in Ordered Rough Nanochannels
,”
J. Mol. Liq.
,
337
, p.
116052
.
44.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation Based on Non-Newtonian Flow in Lubrication Mechanics
,”
Acta Mechanica Sinica
,
6
(
4
), pp.
289
295
.
45.
Yang
,
P.
,
1998
,
Numerical Analysis of Fluid Lubrication
,
National Defense Industry Press
,
Beijing, China
.
46.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1977
,
Elasto-Hydrodynamic Lubrication
,
Pergamon Press
,
Oxford, UK
.
47.
Roelands
,
C. J. A.
,
Winer
,
W. O.
, and
Wright
,
W. A.
,
1971
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
ASME J. Lubr. Technol.
,
93
(
1
), pp.
209
210
.
48.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
.
49.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
(
1
), p.
22
.
50.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
(
2
), p.
106059
.
51.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier Science
,
New York
.
52.
Yang
,
P.
, and
Rodkiewicz
,
C. M.
,
1997
, “
On the Numerical Analysis to the Thermoelastohydrodynamic Lubrication of a Tilting Pad Inclusive of Side Leakage
,”
Tribol. Trans.
,
40
(
2
), pp.
259
266
.
53.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1981
,
Ball Bearing Lubrication. The Elastohydrodynamics of Elliptical Contacts
,
John Wiley & Sons Inc.
,
New York
.
54.
Savio
,
D.
,
Fillot
,
N.
,
Vergne
,
P.
,
Hetzler
,
H.
,
Seemann
,
W.
, and
Morales Espejel
,
G. E.
,
2015
, “
A Multiscale Study on the Wall Slip Effect in a Ceramic-Steel Contact With Nanometer-Thick Lubricant Film by a Nano-to-Elastohydrodynamic Lubrication Approach
,”
ASME J. Tribol.
,
137
(
3
), p.
031502
.
55.
Nagayama
,
G.
, and
Cheng
,
P.
,
2004
, “
Effects of Interface Wettability on Microscale Flow by Molecular Dynamics Simulation
,”
Int. J. Heat Mass Transfer
,
47
(
3
), pp.
501
513
.
56.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin-Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
.
You do not currently have access to this content.