Abstract

The purpose of this study is to investigate the role of the misalignment journal, caused by linear shaft misalignment, on the transient wear and mixed lubrication performances using a numerical model. In the numerical model, the transient geometry lubrication clearance considering the journal misalignment, the transient elastic deformation, and the transient wear depth of the bearing are incorporated to evaluate the transient film thickness during the wear process. The evolutions, under different external loads, of the wear depth of the bearing, wear-rate, elastic deformation of the bearing, film thickness, fluid pressure, and contact pressure are calculated by the numerical model. Furthermore, the calculated results of the misaligned journal bearing are compared with those of the aligned journal bearing. The results show that the distributions of the wear depth of the bearing, film pressure, and elastic deformation of the bearing are asymmetric along the axial direction and the peak values of them shift toward the back end when the journal misalignment is considered. The maximum wear depth, maximum fluid pressure, maximum contact pressure, and maximum bearing’s elastic deformation of the misaligned journal condition are significantly larger than those of the aligned journal condition.

References

1.
Cameron
,
A.
, and
Wood
,
W. L.
,
1949
, “
The Full Journal Bearing
,”
Proc. Inst. Mech. Eng.
,
161
(
1
), pp.
59
72
.
2.
Dowson
,
D.
, and
Higginson
,
G. R.
,
2009
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem (Reprinted From vol 1, 1959)
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
223
(
1
), pp.
114
114
.
3.
Wang
,
Q.
,
Shi
,
F. H.
, and
Lee
,
S. C.
,
1997
, “
A Mixed-Lubrication Study of Journal Bearing Conformal Contacts
,”
ASME J. Tribol.
,
119
(
3
), pp.
456
461
.
4.
Dufrane
,
K. F.
,
Kannel
,
J. W.
, and
Mccloskey
,
T. H.
,
1983
, “
Wear of Steam-Turbine Journal Bearings at Low Operating Speeds
,”
ASME J. Lubr. Technol.
,
105
(
3
), pp.
313
317
.
5.
Fillon
,
M.
, and
Bouyer
,
J.
,
2004
, “
Thermohydrodynamic Analysis of a Worn Plain Journal Bearing
,”
Tribol Int.
,
37
(
2
), pp.
129
136
.
6.
Bouyer
,
J.
,
Fillon
,
M.
, and
Pierre-Danos
,
I.
,
2007
, “
Influence of Wear on the Behavior of a Two-Lobe Hydrodynamic Journal Bearing Subjected to Numerous Startups and Stops
,”
ASME J. Tribol.
,
129
(
1
), pp.
205
208
.
7.
Nicodemus
,
E. R.
, and
Sharma
,
S. C.
,
2010
, “
Influence of Wear on the Performance of Multirecess Hydrostatic Journal Bearing Operating With Micropolar Lubricant
,”
ASME J. Tribol.
,
132
(
2
), p.
021703
.
8.
Nicodemus
,
E. R.
, and
Sharma
,
S. C.
,
2010
, “
A Study of Worn Hybrid Journal Bearing System With Different Recess Shapes Under Turbulent Regime
,”
ASME J. Tribol.
,
132
(
4
), p.
021704
.
9.
Sharma
,
S. C.
,
Phalle
,
V. M.
, and
Jain
,
S. C.
,
2011
, “
Influence of Wear on the Performance of a Multirecess Conical Hybrid Journal Bearing Compensated with Orifice Restrictor
,”
Tribol Int.
,
44
(
12
), pp.
1754
1764
.
10.
Phalle
,
V. M.
,
Sharma
,
S. C.
, and
Jain
,
S. C.
,
2011
, “
Influence of Wear on the Performance of a 2-Lobe Multirecess Hybrid Journal Bearing System Compensated with Membrane Restrictor
,”
Tribol Int.
,
44
(
4
), pp.
380
395
.
11.
Sharma
,
S. C.
,
Phalle
,
V. M.
, and
Jain
,
S. C.
,
2012
, “
Combined Influence of Wear and Misalignment of Journal on the Performance Analysis of Three-Lobe Three-Pocket Hybrid Journal Bearing Compensated With Capillary Restrictor
,”
ASME J. Tribol.
,
134
(
1
), p.
011703
.
12.
Aghdam
,
A. B.
, and
Khonsari
,
M. M.
,
2011
, “
On the Correlation Between Wear and Entropy in dry Sliding Contact
,”
Wear
,
270
(
11–12
), pp.
781
790
.
13.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2013
, “
An Engineering Approach for the Prediction of Wear in Mixed Lubricated Contacts
,”
Wear
,
308
(
1–2
), pp.
121
131
.
14.
Aghdam
,
A. B.
, and
Khonsari
,
M. M.
,
2013
, “
Prediction of Wear in Reciprocating Dry Sliding via Dissipated Energy and Temperature Rise
,”
Tribol. Lett.
,
50
(
3
), pp.
365
378
.
15.
Aghdam
,
A.
, and
Khonsari
,
M. M.
,
2014
, “
Prediction of Wear in Grease-Lubricated Oscillatory Journal Bearings via Energy-Based Approach
,”
Wear
,
318
(
1–2
), pp.
188
201
.
16.
Chun
,
S. M.
, and
Khonsari
,
M. M.
,
2016
, “
Wear Simulation for the Journal Bearings Operating Under Aligned Shaft and Steady Load During Start-Up and Coast-Down Conditions
,”
Tribol Int.
,
97
, pp.
440
466
.
17.
Lijesh
,
K.
,
Khonsari
,
M. M.
, and
Kailas
,
S. V.
,
2018
, “
On the Integrated Degradation Coefficient for Adhesive Wear: a Thermodynamic Approach
,”
Wear
,
408
, pp.
138
150
.
18.
Lijesh
,
K.
, and
Khonsari
,
M. M.
,
2019
, “
On the Degradation of Tribo-Components in Boundary and Mixed Lubrication Regimes
,”
Tribol. Lett.
,
67
(
1
), p.
12
.
19.
Mortazavi
,
V.
, and
Khonsari
,
M. M.
,
2018
, “
Theoretical and Experimental Study on Interdependence of Wear and Wetting in Metallic Surfaces
,”
Tribol Int.
,
123
, pp.
61
70
.
20.
Schmidt
,
A. A.
,
Schmidt
,
T.
,
Grabherr
,
O.
, and
Bartel
,
D.
,
2018
, “
Transient Wear Simulation Based on Three-Dimensional Finite Element Analysis for a dry Running Tilted Shaft-Bushing Bearing
,”
Wear
,
408
, pp.
171
179
.
21.
Xiang
,
G.
,
Han
,
Y. F.
,
Wang
,
J. X.
,
Wang
,
J. F.
, and
Ni
,
X. K.
,
2019
, “
Coupling Transient Mixed Lubrication and Wear for Journal Bearing Modeling
,”
Tribol Int.
,
138
, pp.
1
15
.
22.
Sun
,
J.
, and
Changlin
,
G.
,
2004
, “
Hydrodynamic Lubrication Analysis of Journal Bearing Considering Misalignment Caused by Shaft Deformation
,”
Tribol Int.
,
37
(
10
), pp.
841
848
.
23.
Sun
,
J.
,
Gui
,
C. L.
, and
Li
,
Z. Y.
,
2005
, “
An Experimental Study of Journal Bearing Lubrication Effected by Journal Misalignment as a Result of Shaft Deformation Under Load
,”
ASME J. Tribol.
,
127
(
4
), pp.
813
819
.
24.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2010
, “
On the Behavior of Misaligned Journal Bearings Based on Mass-Conservative Thermohydrodynamic Analysis
,”
ASME J. Tribol.
,
132
(
1
), p.
011702
.
25.
Gu
,
T.
,
Wang
,
Q. J.
,
Xiong
,
S. W.
,
Liu
,
Z.
,
Gangopadhyay
,
A.
, and
Liu
,
Z. Q.
,
2019
, “
Profile Design for Misaligned Journal Bearings Subjected to Transient Mixed Lubrication
,”
ASME J. Tribol.
,
141
(
7
), p.
071701
.
26.
Zheng
,
L. Y.
,
Zhu
,
H. H.
,
Zhu
,
J. C.
, and
Deng
,
Y. B.
,
2020
, “
Effects of Oil Film Thickness and Viscosity on the Performance of Misaligned Journal Bearings with Couple Stress Lubricants
,”
Tribol Int.
,
146
, p.
106229
.
27.
Li
,
B.
,
Sun
,
J.
,
Zhu
,
S. Y.
,
Fu
,
Y. Y.
,
Zhao
,
X. Y.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y. P.
,
Li
,
Y. Q.
, and
Zhu
,
G. X.
,
2019
, “
Thermohydrodynamic Lubrication Analysis of Misaligned Journal Bearing Considering the Axial Movement of Journal
,”
Tribol Int.
,
135
, pp.
397
407
.
28.
Zhu
,
S. Y.
,
Sun
,
J.
,
Li
,
B.
, and
Zhu
,
G. X.
,
2020
, “
Thermal Turbulent Lubrication Analysis of Rough Surface Journal Bearing with Journal Misalignment
,”
Tribol Int.
,
144
, pp.
1
12
.
29.
Zhu
,
S. Y.
,
Sun
,
J.
,
Li
,
B.
,
Zhao
,
X. Y.
,
Wang
,
H.
,
Teng
,
Q.
,
Ren
,
Y. P.
, and
Zhu
,
G. X.
,
2020
, “
Research on Turbulent Lubrication of Misaligned Journal Bearing Considering the Axial Motion of Journal
,”
ASME J. Tribol.
,
142
(
2
).
30.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
,
2020
, “
On the Wear of Dynamically-Loaded Engine Bearings with Provision for Misalignment and Surface Roughness
,”
Tribol Int.
,
141
, pp.
1
14
.
31.
Patir
,
N.
, and
Cheng
,
H.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
32.
Greenwood
,
J. A.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.
33.
Woodward
,
W.
, and
Paul
,
B.
,
1976
, “
Contact Stresses for Closely Conforming Bodies–Application to Cylinders and Spheres
,” Department of Transportation.
34.
Halling
,
J.
,
1976
, “
A Contribution to the Theory of Friction and Wear and the Relationship Between Them
,”
Proc. Inst. Mech. Eng.
,
190
(
1
), pp.
477
488
.
35.
Yamada
,
K.
,
Takeda
,
N.
,
Kagami
,
J.
, and
Naoi
,
T.
,
1979
, “
Analysis of the Mechanism of Steady Wear by the Fatigue Theory as a Stochastic-Process
,”
Wear
,
54
(
2
), pp.
217
233
.
36.
Omar
,
M. K.
,
Atkins
,
A. G.
, and
Lancaster
,
J. K.
,
1986
, “
The Adhesive Fatigue Wear of Metals
,”
Wear
,
107
(
3
), pp.
279
285
.
37.
Tan
,
Y. Q.
,
Zhang
,
L. H.
, and
Hu
,
Y. H.
,
2015
, “
A Wear Model of Plane Sliding Pairs Based on Fatigue Contact Analysis of Asperities
,”
Tribol. Trans.
,
58
(
1
), pp.
148
157
.
38.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
39.
Kragelsky
,
I. V.
,
Dobychin
,
M. N.
, and
Kombalov
,
V. S.
,
2013
,
Friction and Wear: Calculation Methods
,
Elsevier
,
New York
.
40.
Greenwood
,
J. A.
, and
Williamson
,
J. B.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
41.
Mahato
,
S.
,
Singh
,
S.
, and
Samanta
,
S.
,
2003
, “
Experimental Method for Forcasting the Wear Rate of a Journal Bearing and its Variation with Clearance Space
,”
International Conference on Mechanical Engineering
,
Dhaka, Bangladesh
, pp.
1
4
.
You do not currently have access to this content.