Abstract

Effective design of corrosion-resistant coatings is critical for the protection of metals and alloys. Many state-of-the-art corrosion-resistant coatings are unable to satisfy the challenges in extreme environments for tribological applications, such as elevated or cryogenic temperatures, high mechanical loads and impacts, severe wear, chemical attack, or a combination of these. The nature of challenging conditions demands that coatings have high corrosion and wear resistance, sustained friction control, and maintain surface integrity. In this research, multi-performance metal-ceramic composite coatings were developed for applications in harsh environments. These coatings were developed with an easy to fabricate, low-cost, and safe procedure. The coating consisted of boron nitride, graphite, silicon carbide, and transition metals such as chromium or nickel using epoxy as vehicle and bonding agent. Salt spray (SS) corrosion tests showed that 1010 carbon steel (1/4 hard temper) substrates lost 20–100 × more mass than the coatings. The potentiodynamic polarization study showed better performance of the coatings by seven orders of magnitude in terms of corrosion relative to the substrate. Additionally, the corrosion rates of the coatings with Ni as an additive were five orders of magnitude lower than reported. The coefficient of friction (COF) of coatings was as low as 0.1, five to six times lower than that of epoxy and lower than a wide range of epoxy resin-based coatings found in literature. Coatings developed here exhibited potential in applications in challenging environments for tribological applications.

References

1.
Revie
,
R. W.
,
2008
,
Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering
,
John Wiley & Sons
,
New York
.
2.
Shreir
,
L. L.
,
2013
,
Corrosion: Corrosion Control
,
Newnes
,
London
.
3.
Kutz
,
M.
,
2018
,
Handbook of Environmental Degradation of Materials
,
William Andrew
,
London
.
4.
Paul
,
S.
,
2012
, “
Modeling to Study the Effect of Environmental Parameters on Corrosion of Mild Steel in Seawater Using Neural Network
,”
ISRN Metall.
,
2012
, pp.
1
6
.
5.
Zhang
,
J.
, and
Li
,
N.
,
2007
, “
Analysis on Liquid Metal Corrosion–Oxidation Interactions
,”
Corros. Sci.
,
49
(
11
), pp.
4154
4184
.
6.
Selvam
,
K.
,
Saini
,
J.
,
Perumal
,
G.
,
Ayyagari
,
A.
,
Salloom
,
R.
,
Mondal
,
R.
,
Mukherjee
,
S.
,
Grewal
,
H. S.
, and
Arora
,
H. S.
,
2019
, “
Exceptional Cavitation Erosion-Corrosion Behavior of Dual-Phase Bimodal Structure in Austenitic Stainless Steel
,”
Tribol. Int.
,
134
, pp.
77
86
.
7.
Mokhatab
,
S.
,
Poe
,
W. A.
, and
Mak
,
J. Y.
,
2018
,
Handbook of Natural Gas Transmission and Processing: Principles and Practices
,
Gulf Professional Publishing
.
8.
Renner
,
P.
,
Jha
,
S.
,
Chen
,
Y.
,
Raut
,
A.
,
Mehta
,
S. G.
, and
Liang
,
H.
,
2021
, “
A Review on Corrosion and Wear of Additively Manufactured Alloys
,”
ASME J. Tribol.
,
143
(
5
), p.
050802
.
9.
Lee
,
K.
,
Dai
,
W.
,
Naugle
,
D.
, and
Liang
,
H.
,
2018
, “
Effects of Microstructure of Quasicrystal Alloys on Their Mechanical and Tribological Performance
,”
ASME J. Tribol.
,
140
(
5
), p.
051605
.
10.
Dai
,
W.
,
Lee
,
K.
,
Sinyukov
,
A. M.
, and
Liang
,
H.
,
2017
, “
Effects of Vanadium Oxide Nanoparticles on Friction and Wear Reduction
,”
ASME J. Tribol.
,
139
(
6
), p.
061607
.
11.
Choi
,
H.
,
Lee
,
K.
,
Reeks
,
J.
, and
Liang
,
H.
,
2016
, “
Design and Synthesis of a Superhydrophobic PVDF-Based Composite
,”
ASME J. Tribol.
,
138
(
2
), p.
022301
.
12.
Shin
,
Y.
,
Xiao
,
H.
, and
Liang
,
H.
,
2015
, “
A Novel Composite With Nacreous Reinforcement for Corrosion and Wear Reduction
,”
ASME J. Tribol.
,
137
(
2
), p. 021602.
13.
Barkley
,
B.
,
Sanchez
,
C.
, and
Liang
,
H.
,
2012
, “
In Situ Strengthening of the Aluminum-Based Gadolinium Alloy Composite for Tribological Applications
,”
ASME J. Tribol.
,
134
(
1
), p. 011603.
14.
Huitink
,
D.
,
Zarrin
,
T.
,
Sanders
,
M.
,
Kundu
,
S.
, and
Liang
,
H.
,
2011
, “
Effects of Particle-Induced Crystallization on Tribological Behavior of Polymer Nanocomposites
,”
ASME J. Tribol.
,
133
(
2
), p. 021603.
15.
Fox
,
G. R.
, and
Liang
,
H.
,
2010
, “
Wear Mode Comparison of High-Performance Inconel Alloys
,”
ASME J. Tribol.
,
132
(
2
), p.
021603
.
16.
He
,
X.
,
Chiu
,
C.
,
Esmacher
,
M. J.
, and
Liang
,
H.
,
2013
, “
Nanostructured Photocatalytic Coatings for Corrosion Protection and Surface Repair
,”
Surf. Coat. Technol.
,
237
, pp.
320
327
.
17.
Fevzi Ozaydin
,
M.
, and
Liang
,
H.
,
2016
, “
Design and Synthesis of a Geopolymer-Enhanced Quasi-Crystalline Composite for Resisting Wear and Corrosion
,”
ASME J. Tribol.
,
138
(
2
), p.
021601
.
18.
Daroonparvar
,
M.
,
Yajid
,
M. A. M.
,
Bakhsheshi-Rad
,
H. R.
,
Kumar
,
P.
,
Kay
,
C. M.
, and
Kalvala
,
P. R.
,
2020
, “
Fabrication and Corrosion Resistance Evaluation of Novel Epoxy/Oxide Layer (MgO) Coating on Mg Alloy
,”
Prot. Met. Phys. Chem. Surf.
,
56
(
5
), pp.
1039
1050
.
19.
Yuan
,
H.
,
Qi
,
F.
,
Zhao
,
N.
,
Wan
,
P.
,
Zhang
,
B.
,
Xiong
,
H.
,
Liao
,
B.
, and
Ouyang
,
X.
,
2020
, “
Graphene Oxide Decorated With Titanium Nanoparticles to Reinforce the Anti-Corrosion Performance of Epoxy Coating
,”
Coatings
,
10
(
2
), p.
129
.
20.
Chen
,
Y.
,
Ren
,
B.
,
Gao
,
S.
, and
Cao
,
R.
,
2020
, “
The Sandwich-Like Structures of Polydopamine and 8-Hydroxyquinoline Coated Graphene Oxide for Excellent Corrosion Resistance of Epoxy Coatings
,”
J. Colloid Interface Sci.
,
565
, pp.
436
448
.
21.
Wu
,
Y.
,
He
,
Y.
,
Zhou
,
T.
,
Chen
,
C.
,
Zhong
,
F.
,
Xia
,
Y.
,
Xie
,
P.
, and
Zhang
,
C.
,
2020
, “
Synergistic Functionalization of H-BN by Mechanical Exfoliation and PEI Chemical Modification for Enhancing the Corrosion Resistance of Waterborne Epoxy Coating
,”
Prog. Org. Coat.
,
142
, p.
105541
.
22.
Toorani
,
M.
,
Aliofkhazraei
,
M.
,
Mahdavian
,
M.
, and
Naderi
,
R.
,
2020
, “
Effective PEO/Silane Pretreatment of Epoxy Coating Applied on AZ31B Mg Alloy for Corrosion Protection
,”
Corros. Sci.
,
169
, p.
108608
.
23.
Li
,
P.
,
He
,
X.
,
Huang
,
T.-C.
,
White
,
K. L.
,
Zhang
,
X.
,
Liang
,
H.
,
Nishimura
,
R.
, and
Sue
,
H.-J.
,
2015
, “
Highly Effective Anti-Corrosion Epoxy Spray Coatings Containing Self-Assembled Clay in Smectic Order
,”
J. Mater. Chem. A
,
3
(
6
), pp.
2669
2676
.
24.
Rohwerder
,
M.
,
Isik-Uppenkamp
,
S.
, and
Amarnath
,
C. A.
,
2011
, “
Application of the Kelvin Probe Method for Screening the Interfacial Reactivity of Conducting Polymer Based Coatings for Corrosion Protection
,”
Electrochim. Acta
,
56
(
4
), pp.
1889
1893
.
25.
Gonzalez-Pech
,
N.
, and
Grassian
,
V.
,
2018
,
Surface Chemical Functionalities of Environmental Nanomaterials.
,
Elsevier
,
San Diego, CA
.
26.
Włoch
,
M.
, and
Datta
,
J.
,
2020
, “Rheology of Polymer Blends,”
Rheology of Polymer Blends and Nanocomposites
,
Elsevier
,
New York
, pp.
19
29
.
27.
Asmatulu
,
R.
,
Nguyen
,
P.
, and
Asmatulu
,
E.
,
2013
, “Nanotechnology Safety in the Automotive Industry,”
Nanotechnology Safety
,
Elsevier
,
New York
, pp.
57
72
.
28.
Driver
,
M.
,
2012
,
Coatings for Biomedical Applications
,
Elsevier
,
New York
.
29.
Pan
,
G.
,
Guo
,
Q.
,
Ding
,
J.
,
Zhang
,
W.
, and
Wang
,
X.
,
2010
, “
Tribological Behaviors of Graphite/Epoxy Two-Phase Composite Coatings
,”
Tribol. Int.
,
43
(
8
), pp.
1318
1325
.
30.
Wang
,
C.
,
Wang
,
H.
,
Li
,
M.
,
Liu
,
Z.
,
Lv
,
C.
,
Zhu
,
Y.
, and
Bao
,
N.
,
2018
, “
Anti-Corrosion and Wear Resistance Properties of Polymer Composite Coatings: Effect of Oily Functional Fillers
,”
J. Taiwan Inst. Chem. Eng.
,
85
, pp.
248
256
.
31.
Mohan
,
T.
, and
Kanny
,
K.
,
2019
, “
Tribological Properties of Nanoclay-Infused Banana Fiber Reinforced Epoxy Composites
,”
ASME J. Tribol.
,
141
(
5
), p. 052003.
32.
Gafsi
,
N.
,
Smaoui
,
I.
,
Verdejo
,
R.
,
Kharrat
,
M.
,
Manchado
,
, and
Dammak
,
M.
,
2021
, “
Tribological and Mechanical Characterization of Epoxy/Graphite Composite Coatings: Effects of Particles’ Size and Oxidation
,”
Proc. Inst. Mech. Eng. J
,
235
(
1
), pp.
129
137
.
33.
Surnam
,
B. Y. R.
,
Chui
,
C.-W.
,
Xiao
,
H.
, and
Liang
,
H.
,
2016
, “
Investigating Atmospheric Corrosion Behavior of Carbon Steel in Coastal Regions of Mauritius Using Raman Spectroscopy
,”
Matéria (Rio J.)
,
21
(
1
), pp.
157
168
.
34.
Surnam
,
B.
,
Chiu
,
C.
,
Xiao
,
H.
, and
Liang
,
H.
,
2015
, “
Long Term Atmospheric Corrosion in Mauritius
,”
Corros. Eng., Sci. Technol.
,
50
(
2
), pp.
155
159
.
35.
Akinci
,
A.
,
2009
, “
The Salt Spray Corrosion of Polymer Coating on Steel
,”
Arab. J. Sci. Eng.
,
34
, p.
139
.
36.
Chen
,
X.
,
Yang
,
H. Y.
,
Abbott
,
T.
,
Easton
,
M. A.
, and
Birbilis
,
N.
,
2012
, “
Corrosion-Resistant Electrochemical Platings on Magnesium Alloys: A State-of-the-Art Review
,”
Corrosion
,
68
(
6
), pp.
518
535
.
37.
De Damborenea
,
J.
,
Conde
,
A.
, and
Arenas
,
M.
,
2014
, “Corrosion Inhibition With Rare Earth Metal Compounds in Aqueous Solutions,”
Rare Earth-Based Corrosion Inhibitors
,
Elsevier
,
New York
, pp.
84
116
.
38.
Monticelli
,
C.
,
2018
,
Encyclopedia of Interfacial Chemistry
,
Elsevier
,
University of Ferrara, Ferrara, Italy
, pp.
164
171
.
39.
Bahlakeh
,
G.
,
Ramezanzadeh
,
B.
,
Dehghani
,
A.
, and
Ramezanzadeh
,
M.
,
2019
, “
Novel Cost-Effective and High-Performance Green Inhibitor Based on Aqueous Peganum harmala Seed Extract for Mild Steel Corrosion in HCl Solution: Detailed Experimental and Electronic/Atomic Level Computational Explorations
,”
J. Mol. Liq.
,
283
, pp.
174
195
.
40.
Obot
,
I.
,
Meroufel
,
A.
,
Onyeachu
,
I. B.
,
Alenazi
,
A.
, and
Sorour
,
A. A.
,
2019
, “
Corrosion Inhibitors for Acid Cleaning of Desalination Heat Exchangers: Progress, Challenges and Future Perspectives
,”
J. Mol. Liq.
,
296
, p.
111760
.
41.
Yu
,
Y.
,
Shironita
,
S.
,
Souma
,
K.
, and
Umeda
,
M.
,
2018
, “
Effect of Chromium Content on the Corrosion Resistance of Ferritic Stainless Steels in Sulfuric Acid Solution
,”
Heliyon
,
4
(
11
), p.
e00958
.
42.
Kim
,
J. K.
,
Kim
,
Y. H.
,
Lee
,
J. S.
, and
Kim
,
K. Y.
,
2010
, “
Effect of Chromium Content on Intergranular Corrosion and Precipitation of Ti-Stabilized Ferritic Stainless Steels
,”
Corros. Sci.
,
52
(
5
), pp.
1847
1852
.
43.
Kamimura
,
T.
, and
Stratmann
,
M.
,
2001
, “
The Influence of Chromium on the Atmospheric Corrosion of Steel
,”
Corros. Sci.
,
43
(
3
), pp.
429
447
.
44.
Denpo
,
K.
, and
Ogawa
,
H.
,
1993
, “
Effects of Nickel and Chromium on Corrosion Rate of Linepipe Steel
,”
Corros. Sci.
,
35
(
1–4
), pp.
285
288
.
45.
Husby
,
H.
,
Iannuzzi
,
M.
,
Johnsen
,
R.
,
Kappes
,
M.
, and
Barnoush
,
A.
,
2018
, “
Effect of Nickel on Hydrogen Permeation in Ferritic/Pearlitic Low Alloy Steels
,”
Int. J. Hydrogen Energy
,
43
(
7
), pp.
3845
3861
.
46.
Tian
,
Y.
,
Dong
,
C.
,
Wang
,
G.
,
Cheng
,
X.
, and
Li
,
X.
,
2020
, “
The Effect of Nickel on Corrosion Behaviour of High-Strength Low Alloy Steel Rebar in Simulated Concrete Pore Solution
,”
Constr. Build. Mater.
,
246
, p.
118462
.
47.
Cheng
,
X.
,
Jin
,
Z.
,
Liu
,
M.
, and
Li
,
X.
,
2017
, “
Optimizing the Nickel Content in Weathering Steels to Enhance Their Corrosion Resistance in Acidic Atmospheres
,”
Corros. Sci.
,
115
, pp.
135
142
.
48.
Alamri
,
H.
,
Al-Shahrani
,
A.
,
Bovero
,
E.
,
Khaldi
,
T.
,
Alabedi
,
G.
,
Obaid
,
W.
,
Al-Taie
,
I.
, and
Fihri
,
A.
,
2018
, “
Self-Cleaning Superhydrophobic Epoxy Coating Based on Fibrous Silica-Coated Iron Oxide Magnetic Nanoparticles
,”
J. Colloid Interface Sci.
,
513
, pp.
349
356
.
49.
Šolić
,
T.
,
Marić
,
D.
,
Putnik
,
I.
, and
Samardžić
,
I.
,
2019
, “
Corrosion Resistance of the X6CrNiTi18-10 Material Exposed to a Salt Spray Test
,”
Metallurgy
,
58
(
3–4
), pp.
307
310
.
50.
Grassini
,
S.
,
Matteis
,
P.
,
Scavino
,
G.
,
Rossetto
,
M.
, and
Firrao
,
D.
,
2011
, “
Salt Spray Corrosion of Mechanical Junctions of Magnesium Castings
,”
Magnesium Technol.
,
2011
, pp.
493
499
.
51.
Huang
,
N.
,
Jin
,
N.
, and
Luo
,
X.-F.
,
2016
, “
Influence of Salt Spray Environment on the Transmission Characteristics of the Dual Left-Handed Material
,”
Prog. Electromagn. Res. Lett.
,
63
, pp.
129
134
.
52.
Varacalle Jr
,
D.
,
Zeek
,
D.
,
Couch
,
K.
,
Benson
,
D.
, and
Kirk
,
S.
,
1997
,
Flame Spraying of Polymers
,
Lockheed Martin Idaho Technologies Co., Idaho National Engineering Lab
,
Idaho Falls, ID
.
53.
Nunes
,
R. A. X.
,
Costa
,
V. C.
,
Calado
,
V. M. d. A.
, and
Branco
,
J. R. T.
,
2009
, “
Wear, Friction, and Microhardness of a Thermal Sprayed PET: Poly (Ethylene Terephthalate) Coating
,”
Mater. Res.
,
12
(
2
), pp.
121
125
.
54.
Lorenz
,
W.
, and
Mansfeld
,
F.
,
1981
, “
Determination of Corrosion Rates by Electrochemical DC and AC Methods
,”
Corros. Sci.
,
21
(
9–10
), pp.
647
672
.
55.
Jha
,
S.
,
Chen
,
Y.
,
Wang
,
R.
,
Gharib
,
M.
, and
Liang
,
H.
,
2019
, “
Design and Synthesis of a High Performance Coating
,”
American Society of Mechanical Engineers
,
Salt Lake City, UT
,
Nov. 11–14
, p.
V012T10A044
.
56.
Nowicki
,
B.
,
1985
, “
Multiparameter Representation of Surface Roughness
,”
Wear
,
102
(
3
), pp.
161
176
.
57.
Whitley
,
J.
,
Kusy
,
R.
,
Mayhew
,
M.
, and
Buckthal
,
J.
,
1987
, “
Surface Roughness of Stainless Steel and Electroformed Nickel Standards Using a HeNe Laser
,”
Opt. Laser Technol.
,
19
(
4
), pp.
189
196
.
58.
Song
,
W.
,
Gu
,
A.
,
Liang
,
G.
, and
Yuan
,
L.
,
2011
, “
Effect of the Surface Roughness on Interfacial Properties of Carbon Fibers Reinforced Epoxy Resin Composites
,”
Appl. Surf. Sci.
,
257
(
9
), pp.
4069
4074
.
59.
Liu
,
D.
,
Zhao
,
W.
,
Liu
,
S.
,
Cen
,
Q.
, and
Xue
,
Q.
,
2016
, “
Comparative Tribological and Corrosion Resistance Properties of Epoxy Composite Coatings Reinforced With Functionalized Fullerene C60 and Graphene
,”
Surf. Coat. Technol.
,
286
, pp.
354
364
.
60.
Joly-Pottuz
,
L.
,
Dassenoy
,
F.
,
Martin
,
J.
,
Vrbanic
,
D.
,
Mrzel
,
A.
,
Mihailovic
,
D.
,
Vogel
,
W.
, and
Montagnac
,
G.
,
2005
, “
Tribological Properties of Mo–S–I Nanowires as Additive in Oil
,”
Trib. Lett.
,
18
(
3
), pp.
385
393
.
61.
Meng
,
F.
,
Zhang
,
Z.
,
Gao
,
P.
,
Kang
,
R.
,
Boyjoo
,
Y.
,
Yu
,
J.
, and
Liu
,
T.
,
2020
, “
Excellent Tribological Properties of Epoxy—Ti3C2 With Three-Dimensional Nanosheets Composites
,”
Friction
,
9
(
4
), pp.
1
13
.
62.
Yan
,
H.
,
Li
,
W.
,
Li
,
H.
,
Fan
,
X.
, and
Zhu
,
M.
,
2019
, “
Ti3C2 MXene Nanosheets Toward High-Performance Corrosion Inhibitor for Epoxy Coating
,”
Prog. Org. Coat.
,
135
, pp.
156
167
.
63.
Hou
,
X.
,
Shan
,
C.
, and
Choy
,
K.-L.
,
2008
, “
Microstructures and Tribological Properties of PEEK-Based Nanocomposite Coatings Incorporating Inorganic Fullerene-Like Nanoparticles
,”
Surf. Coat. Technol.
,
202
(
11
), pp.
2287
2291
.
64.
Zhang
,
G.
,
Liao
,
H.
,
Li
,
H.
,
Mateus
,
C.
,
Bordes
,
J.-M.
, and
Coddet
,
C.
,
2006
, “
On Dry Sliding Friction and Wear Behaviour of PEEK and PEEK/SiC-Composite Coatings
,”
Wear
,
260
(
6
), pp.
594
600
.
65.
Verma
,
C.
,
Olasunkanmi
,
L. O.
,
Akpan
,
E. D.
,
Quraishi
,
M.
,
Dagdag
,
O.
,
El Gouri
,
M.
,
Sherif
,
E.-S. M.
, and
Ebenso
,
E. E.
,
2020
, “
Epoxy Resins as Anticorrosive Polymeric Materials: A Review
,”
React. Funct. Polym.
,
156
, p.
104741
.
66.
Le Pen
,
C.
,
Lacabanne
,
C.
, and
Pébère
,
N.
,
2000
, “
Structure of Waterborne Coatings by Electrochemical Impedance Spectroscopy and a Thermostimulated Current Method: Influence of Fillers
,”
Prog. Org. Coat.
,
39
(
2–4
), pp.
167
175
.
67.
Veleva
,
L.
,
Chin
,
J.
, and
Del Amo
,
B.
,
1999
, “
Corrosion Electrochemical Behavior of Epoxy Anticorrosive Paints Based on Zinc Molybdenum Phosphate and Zinc Oxide
,”
Prog. Org. Coat.
,
36
(
4
), pp.
211
216
.
68.
Vilche
,
J.
,
Bucharsky
,
E.
, and
Giudice
,
C. A.
,
2002
, “
Application of EIS and SEM to Evaluate the Influence of Pigment Shape and Content in ZRP Formulations on the Corrosion Prevention of Naval Steel
,”
Corros. Sci.
,
44
(
6
), pp.
1287
1309
.
69.
Bierwagen
,
G.
,
Battocchi
,
D.
,
Simões
,
A.
,
Stamness
,
A.
, and
Tallman
,
D.
,
2007
, “
The Use of Multiple Electrochemical Techniques to Characterize Mg-Rich Primers for Al Alloys
,”
Prog. Org. Coat.
,
59
(
3
), pp.
172
178
.
70.
Bayram
,
T. C.
,
Orbey
,
N.
,
Adhikari
,
R. Y.
, and
Tuominen
,
M.
,
2015
, “
FP-Based Formulations as Protective Coatings in Oil/Gas Pipelines
,”
Prog. Org. Coat.
,
88
, pp.
54
63
.
71.
Tang
,
G.
,
Zhang
,
K.
,
Yan
,
Z.
,
Ma
,
L.
, and
Huang
,
X.
,
2017
, “
A Self-Curing, Thermosetting Resin Based on Epoxy and Organic Titanium Chelate as an Anticorrosive Coating Matrix for Heat Exchangers: Preparation and Properties
,”
Prog. Org. Coat.
,
102
, pp.
225
230
.
72.
Lam
,
C. K.
, and
Lau
,
K. T.
,
2006
, “
Localized Elastic Modulus Distribution of Nanoclay/Epoxy Composites by Using Nanoindentation
,”
Compos. Struct.
,
75
(
1–4
), pp.
553
558
.
73.
Shi
,
G.
,
Zhang
,
M. Q.
,
Rong
,
M. Z.
,
Wetzel
,
B.
, and
Friedrich
,
K.
,
2003
, “
Friction and Wear of Low Nanometer Si3N4 Filled Epoxy Composites
,”
Wear
,
254
(
7–8
), pp.
784
796
.
You do not currently have access to this content.