Abstract

Promoting the martensitic transformation through optimum microalloying with Fe and/or Mn was observed to be an effective method to enhance the wear resistance of the Cu50Zr50 at% shape memory alloy (SMA). Among all the potential microelements and concentrations, partial replacement of Cu by up to 1 at% Fe and Mn is of interest since from density functional-based calculations, large minimization of the stacking fault energy (SFE) of the B2 CuZr phase is predicted. For this reason, an effective martensitic transformation is expected. The largest decrease of the SFE from 0.36 J/m2 to 0.26 J/m2 is achieved with partial replacement of Cu by 0.5 at% Fe. This results in the highest martensitic transformation upon wear testing, especially at highest load (15 N) for which the mass loss is 0.0123 g compared to 0.0177 g for Cu50Zr50 and a specific wear-rate of 5.9 mm3/Nm, compared to 8.5 for mm3/Nm for Cu50Zr50. This agrees with the low coefficient of friction of 0.48 ± 0.05 and low roughness of 0.200 ± 0.013 µm of the Fe-containing alloy compared to that for Cu50Zr50, 0.55 and 0.415 ± 0.026 µm, respectively. All the worn surfaces show the formation of abrasive grooves, being shallowest for the more wear resistant 0.5 at% Fe alloy. The second more wear resistant alloy contains 0.5 at% Mn. Wear mechanisms of abrasion, adhesion, and delamination have been identified.

References

1.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
2.
Ma
,
J.
,
Karaman
,
I.
, and
Noebe
,
R. D.
,
2010
, “
High Temperature Shape Memory Alloys
,”
Int. Mater. Rev.
,
55
(
5
), pp.
257
315
.
3.
Younes
,
A.
,
Nnamchi
,
P.
,
Medina
,
J.
,
Pérez
,
P.
,
Villapún
,
V. M.
,
Badimuro
,
F.
,
Kamnis
,
S.
,
Jimenez-Melero
,
E.
, and
González
,
S.
,
2020
, “
Wear Rate at RT and 100 °C and Operating Temperature Range of Microalloyed Cu50Zr50 Shape Memory Alloy
,”
J. Alloys Compd.
,
817
, p.
153330
.
4.
Jackson
,
C.
,
Wagner
,
H.
, and
Wasilewski
,
R.
,
1972
, “
55-Nitinol—The Alloy With a Memory: It’s Physical Metallurgy Properties, and Applications
,”
NASA Spec. Publ.
,
5110
.
5.
Nnamchi
,
P.
,
Younes
,
A.
, and
González
,
S.
,
2019
, “
A Review on Shape Memory Metallic Alloys and Their Critical Stress for Twinning
,”
Intermetallics
,
105
, pp.
61
78
.
6.
Tan
,
L.
, and
Crone
,
W. C.
,
2004
, “
In Situ TEM Observation of two-Step Martensitic Transformation in Aged NiTi Shape Memory Alloy
,”
Scr. Mater.
,
50
(
6
), pp.
819
823
.
7.
Xie
,
J.-X.
,
Liu
,
J.-L.
, and
Huang
,
H.-Y.
,
2015
, “
Structure Design of High-Performance Cu-Based Shape Memory Alloys
,”
Rare Met.
,
34
(
9
), pp.
607
624
.
8.
De Luca
,
F.
,
Nnamchi
,
P.
,
Younes
,
A.
,
Fry
,
A. T.
, and
González
,
S.
,
2019
, “
Stress-Induced Martensitic Transformation of Cu50Zr50 Shape Memory Alloy Optimized Through Microalloying and co-Microalloying
,”
J. Alloys Compd.
,
781
, pp.
337
343
.
9.
Wu
,
Y.
,
Zhou
,
D. Q.
,
Song
,
W. L.
,
Wang
,
H.
,
Zhang
,
Z. Y.
,
Ma
,
D.
,
Wang
,
X. L.
, and
Lu
,
Z. P.
,
2012
, “
Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy
,”
Phys. Rev. Lett.
,
109
(
24
), p.
245506
.
10.
Hattori
,
S.
, and
Tainaka
,
A.
,
2007
, “
Cavitation Erosion of Ti–Ni Base Shape Memory Alloys
,”
Wear
,
262
(
1
), pp.
191
197
.
11.
González
,
S.
,
Pérez
,
P.
,
Rossinyol
,
E.
,
Suriñach
,
S.
,
Dolors Baró
,
M.
,
Pellicer
,
E.
, and
Sort
,
J.
,
2014
, “
Drastic Influence of Minor Fe or Co Additions on the Glass Forming Ability, Martensitic Transformations and Mechanical Properties of Shape Memory Zr–Cu–Al Bulk Metallic Glass Composites
,”
Sci. Technol. Adv. Mater.
,
15
(
3
), p.
035015
.
12.
González
,
S.
,
2016
, “
Role of Minor Additions on Metallic Glasses and Composites
,”
J. Mater. Res.
,
31
(
1
), pp.
76
87
.
13.
Segall
,
M. D.
,
Lindan
,
P. J. D.
,
Probert
,
M. J.
,
Pickard
,
C. J.
,
Hasnip
,
P. J.
,
Clark
,
S. J.
, and
Payne
,
M. C.
,
2002
, “
First-principles Simulation: Ideas, Illustrations and the CASTEP Code
,”
J. Phys.: Condens. Matter.
,
14
(
11
), pp.
2717
2744
.
14.
Clark
,
S. J.
,
Segall
,
M. D.
,
Pickard
,
C. J.
,
Hasnip
,
P. J.
,
Probert
,
M. I. J.
,
Refson
,
K.
, and
Payne
,
M. C.
,
2005
, “
First Principles Methods Using CASTEP
,”
Z. Kristallogr. Cryst. Mater.
,
220
(
5–6
), pp.
567
570
.
15.
De Cooman
,
B. C.
,
Chen
,
L.
,
Kim
,
H. S.
,
Estrin
,
Y.
,
Kim
,
S. K.
, and
Voswinckel
,
H.
,
2009
, “
State-of-the-Science of High Manganese TWIP Steels for Automotive Applications
,”
Proceedings of the International Conference on Microstructure and Texture in Steels and Other Materials
,
Springer
,
London, UK
, pp.
165
183
16.
Duerig
,
T.
,
Melton
,
K.
, and
Proft
,
J.
,
1990
, “Wide Hysteresis Shape Memory Alloys,”
Engineering Aspects of Shape Memory Alloys
,
T. W.
Duering
,
K. N.
Melton
,
D. S.
Stöckel
and
C. M.
Wayman
, eds.,
Butterworth-Heinemann
,
London
, pp.
130
136
.
17.
Tadaki
,
T.
,
1998
,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, New York
.
18.
Gustmann
,
T.
,
Dos Santos
,
J.
,
Gargarella
,
P.
,
Kühn
,
U.
,
Van Humbeeck
,
J.
, and
Pauly
,
S.
,
2017
, “
Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting
,”
Shape Mem. Superelasticity
,
3
(
1
), pp.
24
36
.
19.
Wang
,
D.
,
Li
,
Y.
,
Sun
,
B. B.
,
Sui
,
M. L.
,
Lu
,
K.
, and
Ma
,
E.
,
2004
, “
Bulk Metallic Glass Formation in the Binary Cu–Zr System
,”
Appl. Phys. Lett.
,
84
(
20
), pp.
4029
4031
.
20.
Villapún
,
V. M.
,
Esat
,
F.
,
Bull
,
S.
,
Dover
,
L. G.
, and
González
,
S.
,
2017
, “
Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite Through Cooling Rate Control and Annealing
,”
Materials
,
10
(
5
), p.
506
.
21.
Lejaeghere
,
K.
,
Bihlmayer
,
G.
,
Björkman
,
T.
,
Blaha
,
P.
,
Blügel
,
S.
,
Blum
,
V.
,
Caliste
,
D.
, et al
,
2016
, “
Reproducibility in Density Functional Theory Calculations of Solids
,”
Science
,
351
(
6280
), p.
aad3000
.
22.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
,
1996
, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
,
77
(
18
), pp.
3865
3868
.
23.
Foreman
,
J.
,
Sauerbrunn
,
S.
, and
Marcozzi
,
C.
,
2006
, “
Exploring the Sensitivity of Thermal Analysis Techniques to the Glass Transition
,” TA Instruments, Inc., Thermal Analysis & Rheology, New Castle, DE.
24.
Fabregat-Sanjuan
,
A.
,
Gispert-Guirado
,
F.
,
Ferrando
,
F.
, and
De la Flor
,
S.
,
2018
, “
Identifying the Effects of Heat Treatment Temperatures on the Ti50Ni45Cu5 Alloy Using Dynamic Mechanical Analysis Combined With Microstructural Analysis
,”
Mater. Sci. Eng. A.
,
712
, pp.
281
291
.
25.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
26.
Pan
,
X. F.
,
Zhang
,
H.
,
Zhang
,
Z. F.
,
Stoica
,
M.
,
He
,
G.
, and
Eckert
,
J.
,
2005
, “
Vickers Hardness and Compressive Properties of Bulk Metallic Glasses and Nanostructure-Dendrite Composites
,”
J. Mater. Res.
,
20
(
10
), pp.
2632
2638
.
27.
Rahaman
,
M. L.
,
Zhang
,
L.
,
Liu
,
M.
, and
Liu
,
W.
,
2015
, “
Surface Roughness Effect on the Friction and Wear of Bulk Metallic Glasses
,”
Wear
,
332–333
, pp.
1231
1237
.
28.
Liu
,
Y.
,
Yitian
,
Z.
,
Xuekun
,
L.
, and
Liu
,
Z.
,
2010
, “
Wear Behavior of a Zr-Based Bulk Metallic Glass and its Composites
,”
J. Alloys Compd.
,
503
(
1
), pp.
138
144
.
29.
Suh
,
N.
,
1986
,
Tribophysics
,
Prentice Hall
,
Englewood Cliffs, NJ
.
30.
Zum Gahr
,
K.-H.
,
1987
,
Microstructure and Wear of Materials
,
Elsevier
,
Amesterdam
.
31.
Li
,
Y. C.
,
Zhang
,
C.
,
Xing
,
W.
,
Guo
,
S. F.
, and
Liu
,
L.
,
2018
, “
Design of Fe-Based Bulk Metallic Glasses with Improved Wear Resistance
,”
ACS Appl. Mater. Interfaces
,
10
(
49
), pp.
43144
43155
.
32.
Madhu
,
H.
,
Edachery
,
V.
,
Lijesh
,
K.
,
Perugu
,
C. S.
, and
Kailas
,
S. V.
,
2020
, “
Fabrication of Wear-Resistant Ti 3 AlC 2/Al 3 Ti Hybrid Aluminum Composites by Friction Stir Processing
,”
Metall. Mater. Trans. A.
,
51
(
8
), pp.
4086
4099
.
33.
Huang
,
Y.
,
Fan
,
H.
,
Wang
,
D.
,
Sun
,
Y.
,
Liu
,
F.
,
Shen
,
J.
,
Sun
,
J.
, and
Mi
,
J.
,
2014
, “
The Effect of Cooling Rate on the Wear Performance of a ZrCuAlAg Bulk Metallic Glass
,”
Mater. Des.
,
58
, pp.
284
289
.
34.
Blau
,
P. J.
, and
Komanduri
,
R.
,
1990
, “
Friction and Wear Transitions of Materials: Break-in, Run-in, and Wear-in
,”
ASME J. Eng. Mater. Technol.
,
112
(
2
), pp.
254
254
.
35.
Villapún
,
V. M.
,
Medina
,
J.
,
Pérez
,
P.
,
Esat
,
F.
,
Inam
,
F.
, and
González
,
S.
,
2017
, “
Strategy for Preventing Excessive Wear Rate at High Loads in Bulk Metallic Glass Composites
,”
Mater. Des.
,
135
, pp.
300
308
.
36.
Bhatt
,
J.
,
Kumar
,
S.
,
Dong
,
C.
, and
Murty
,
B. S.
,
2007
, “
Tribological Behaviour of Cu60Zr30Ti10 Bulk Metallic Glass
,”
Mater. Sci. Eng. A.
,
458
(
1
), pp.
290
294
.
37.
Kato
,
K.
, and
Adachi
,
K.
,
2000
, “Wear Mechanisms,”
Modern Tribology Handbook
,
CRC Press
, pp.
273
300
.
38.
Yao
,
B.
,
Han
,
Z.
, and
Lu
,
K.
,
2012
, “
Correlation Between Wear Resistance and Subsurface Recrystallization Structure in Copper
,”
Wear
,
294–295
, pp.
438
445
.
You do not currently have access to this content.