Abstract

A semi-analytical model (SAM) to tackle the steady-state elastic frictional rolling contact problem involving composites is presented. Specifically, the frictional rolling contact is categorized into two subtypes, namely, normal and tangential problems, and the conjugate gradient method (CGM) is used to figure out the normal pressure and tangential traction. In SAM, the equivalent inclusion method (EIM) is applied to analyze the influence of composites on the matrix, and the displacement disturbance resulting from such composites is added to the total surface displacement, which implements the coupling between surface contact and composites. The accuracy of the proposed model is verified by the finite element (FE) model. The effects of composites on the frictional rolling contact behavior are investigated. The results indicate that Young’s modulus, as well as the size and location of the composites, are correlated with the distributions of tangential traction, subsurface stresses, and the sizes of stick and sliding zones.

References

1.
Hertz
,
H.
,
1882
, “
Ueber die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
2.
Carter
,
F. W.
,
1926
, “
On the Action of a Locomotive Driving Wheel
,”
Proc. R. Soc. London, Ser. A
,
112
(
760
), pp.
151
157
.
3.
Vermeulen
,
P. J.
, and
Johnson
,
K. L.
,
1964
, “
Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
338
340
.
4.
Masoudi Nejad
,
R.
,
Farhangdoost
,
K.
, and
Shariati
,
M.
,
2016
, “
Three-Dimensional Simulation of Rolling Contact Fatigue Crack Growth in UIC60 Rails
,”
Tribol. Trans.
,
59
(
6
), pp.
1059
1069
.
5.
Zhou
,
Q.
,
Xie
,
L.
,
Jin
,
X.
,
Wang
,
Z.
,
Wang
,
J.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2015
, “
Numerical Modeling of Distributed Inhomogeneities and Their Effect on Rolling-Contact Fatigue Life
,”
ASME J. Tribol.
,
137
(
1
), p.
011402
.
6.
Zhao
,
X.
, and
Li
,
Z.
,
2011
, “
The Solution of Frictional Wheel-Rail Rolling Contact With a 3D Transient Finite Element Model: Validation and Error Analysis
,”
Wear
,
271
(
1–2
), pp.
444
452
.
7.
Li
,
W.
,
Wen
,
Z.
,
Jin
,
X.
, and
Wu
,
L.
,
2014
, “
Numerical Analysis of Rolling-Sliding Contact With the Frictional Heat in Rail
,”
Chin. J. Mech. Eng.
,
27
(
1
), pp.
41
49
.
8.
Saulot
,
A.
, and
Baillet
,
L.
,
2006
, “
Dynamic Finite Element Simulations for Understanding Wheel-Rail Contact Oscillatory States Occurring Under Sliding Conditions
,”
ASME J. Tribol.
,
128
(
4
), pp.
761
770
.
9.
Rodríguez-Tembleque
,
L.
, and
Abascal
,
R.
,
2010
, “
A 3D FEM-BEM Rolling Contact Formulation for Unstructured Meshes
,”
Int. J. Solids Struct.
,
47
(
2
), pp.
330
353
.
10.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
11.
Deng
,
H.
,
Li
,
W.
,
Zhao
,
H.
, and
Sakai
,
T.
,
2017
, “
Multiple Fatigue Failure Behaviors and Long-Life Prediction Approach of Carburized Cr-Ni Steel With Variable Stress Ratio
,”
Materials
,
10
(
9
), p.
1084
.
12.
Li
,
W.
,
Wang
,
P.
,
Lu
,
L. T.
, and
Sakai
,
T.
,
2014
, “
Evaluation of Gigacycle Fatigue Limit and Life of High-Strength Steel With Interior Inclusion-Induced Failure
,”
Int. J. Damage Mech.
,
23
(
7
), pp.
931
948
.
13.
Sun
,
C.
,
Lei
,
Z.
,
Xie
,
J.
, and
Hong
,
Y.
,
2013
, “
Effects of Inclusion Size and Stress Ratio on Fatigue Strength for High-Strength Steels With Fish-Eye Mode Failure
,”
Int. J. Fatigue
,
48
, pp.
19
27
.
14.
Zhang
,
J.
,
Lu
,
L.
,
Wu
,
P.
,
Ma
,
J.
,
Wang
,
G.
, and
Zhang
,
W.
,
2013
, “
Inclusion Size Evaluation and Fatigue Strength Analysis of 35CrMo Alloy Railway Axle Steel
,”
Mater. Sci. Eng. A
,
562
, pp.
211
217
.
15.
Moghaddam
,
S. M.
, and
Sadeghi
,
F.
,
2016
, “
A Review of Microstructural Alterations Around Nonmetallic Inclusions in Bearing Steel During Rolling Contact Fatigue
,”
Tribol. Trans.
,
59
(
6
), pp.
1142
1156
.
16.
Moghaddam
,
S. M.
,
Sadeghi
,
F.
,
Paulson
,
K.
,
Weinzapfel
,
N.
,
Correns
,
M.
,
Bakolas
,
V.
, and
Dinkel
,
M.
,
2015
, “
Effect of Non-Metallic Inclusions on Butterfly Wing Initiation, Crack Formation, and Spall Geometry in Bearing Steels
,”
Int. J. Fatigue
,
80
, pp.
203
215
.
17.
Moghaddam
,
S. M.
,
Sadeghi
,
F.
,
Weinzapfel
,
N.
, and
Liebel
,
A.
,
2014
, “
A Damage Mechanics Approach to Simulate Butterfly Wing Formation Around Nonmetallic Inclusions
,”
ASME J. Tribol.
,
137
(
1
), p.
011404
.
18.
Alinia
,
Y.
,
Guler
,
M. A.
, and
Adibnazari
,
S.
,
2014
, “
On the Contact Mechanics of a Rolling Cylinder on a Graded Coating. Part 1: Analytical Formulation
,”
Mech. Mater.
,
68
, pp.
207
216
.
19.
Alinia
,
Y.
,
Asiaee
,
A.
, and
Hosseini-nasab
,
M.
,
2019
, “
Stress Analysis in Rolling Contact Problem of a Finite Thickness FGM Layer
,”
Meccanica
,
54
(
1
), pp.
183
203
.
20.
Guler
,
M. A.
,
Alinia
,
Y.
, and
Adibnazari
,
S.
,
2013
, “
On the Contact Mechanics of a Rolling Cylinder on a Graded Coating. Part 2: Numerical Results
,”
Mech. Mater.
,
66
, pp.
134
159
.
21.
Zhou
,
Q.
,
Wang
,
J.
,
Wan
,
Q.
,
Jin
,
F.
,
Yang
,
W.
,
Miao
,
Q.
, and
Wang
,
Z.
,
2017
, “
Numerical Analysis of the Influence of Distributed Inhomogeneities on Tangential Fretting
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
231
(
10
), pp.
1350
1370
.
22.
Yu
,
C.
,
Wang
,
Z.
,
Liu
,
G.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2016
, “
Maximum von Mises Stress and Its Location in Trilayer Materials in Contact
,”
ASME J. Tribol.
,
138
(
4
), p.
041402
.
23.
Zhang
,
M.
,
Zhao
,
N.
,
Glaws
,
P.
,
Hegedus
,
P.
,
Zhou
,
Q.
,
Wang
,
Z.
,
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2017
, “
Elasto-Plastic Contact of Materials Containing Double-Layered Inhomogeneities
,”
Int. J. Solids Struct.
,
126–127
, pp.
208
224
.
24.
Amuzuga
,
K. V.
,
Chaise
,
T.
,
Duval
,
A.
, and
Nelias
,
D.
,
2016
, “
Fully Coupled Resolution of Heterogeneous Elastic-Plastic Contact Problem
,”
ASME J. Tribol.
,
138
(
2
), p.
021403
.
25.
Zhou
,
K.
, and
Dong
,
Q.
,
2016
, “
A Three-Dimensional Model of Line-Contact Elastohydrodynamic Lubrication for Heterogeneous Materials With Inclusions
,”
Int. J. Appl. Mech.
,
8
(
2
), pp.
1
19
.
26.
Zhang
,
M.
,
Wang
,
Q.
,
Wang
,
Z.
,
Zhao
,
N.
, and
Peng
,
Y.
,
2019
, “
Multiscale Computational Scheme for Semi-Analytical Modeling of the Point Contact of Inhomogeneous Materials
,”
Int. J. Solids Struct.
,
168
, pp.
90
108
.
27.
Zhou
,
K.
,
Hoh
,
H. J.
,
Wang
,
X.
,
Keer
,
L.
,
Pang
,
H.
,
Song
,
B.
, and
Wang
,
Q.
,
2013
, “
A Review of Recent Works on Inclusions
,”
Mech. Mater.
,
60
, pp.
144
158
.
28.
Jacq
,
C.
,
Nélias
,
D.
,
Lormand
,
G.
, and
Girodin
,
D.
,
2002
, “
Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code
,”
ASME J. Tribol.
,
124
(
4
), pp.
653
667
.
29.
Liu
,
S.
,
Jin
,
X.
,
Wang
,
Z.
,
Keer
,
L.
, and
Wang
,
Q.
,
2012
, “
Analytical Solution for Elastic Fields Caused by Eigenstrains in a Half-Space and Numerical Implementation Based on FFT
,”
Int. J. Plast.
,
35
, pp.
135
154
.
30.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.
31.
Wang
,
Z.
,
Jin
,
X.
,
Keer
,
L. M.
, and
Wang
,
Q.
,
2012
, “
A Numerical Approach for Analyzing Three-Dimensional Steady-State Rolling Contact Including Creep Using a Fast Semi-Analytical Method
,”
Tribol. Trans.
,
55
(
4
), pp.
446
457
.
32.
Zhang
,
M.
,
Zhao
,
N.
,
Wang
,
Z.
, and
Wang
,
Q.
,
2018
, “
Efficient Numerical Method With a Dual-Grid Scheme for Contact of Inhomogeneous Materials and Its Applications
,”
Comput. Mech.
,
62
(
5
), pp.
991
1007
.
33.
Bruce
,
T.
,
Long
,
H.
, and
Dwyer-Joyce
,
R. S.
,
2018
, “
Threshold Maps for Inclusion-Initiated Micro-Cracks and White Etching Areas in Bearing Steel: The Role of Impact Loading and Surface Sliding
,”
Tribol. Lett.
,
66
(
3
), pp.
1
18
.
34.
Zhang
,
X.
,
Zhang
,
L.
,
Yang
,
W.
, and
Dong
,
Y.
,
2017
, “
Characterization of MnS Particles in Heavy Rail Steels Using Different Methods
,”
Steel Res. Int.
,
88
(
1
), pp.
1
16
.
35.
Gafsi
,
N.
,
Smaoui
,
L.
,
Verdejo
,
R.
,
Kharrat
,
M.
,
Manchado
,
, and
Dammak
,
M.
,
2021
, “
Tribological and Mechanical Characterization of Epoxy/Graphite Composite Coatings: Effects of Particles’ Size and Oxidation
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol
,
235
(
1
), pp.
129
137
.
36.
Mu
,
X. P.
,
Wang
,
W. J.
,
Zhu
,
Y.
,
Liu
,
Q. Y.
,
Guo
,
J.
, and
Ding
,
H. H.
,
2020
, “
Effects of Two Laser Cladding Coatings on Wear and Damage Properties of Wheel/Rail Materials
,”
Tribology
,
40
(
2
), pp.
225
233
.
37.
Nikas
,
G. K.
,
2010
,
Recent Developments in Wear Prevention, Friction and Lubrication
,
Research Signpost
,
Kerala
, pp.
45
136
.
38.
LLorca
,
J.
,
2002
, “
Fatigue of Particle-and Whisker-Reinforced Metal-Matrix Composites
,”
Prog. Mater. Sci.
,
47
(
3
), pp.
283
353
.
39.
Cao
,
W.
,
Ren
,
S.
,
Pu
,
W.
, and
Xiao
,
K.
,
2020
, “
Microstress Cycle and Contact Fatigue of Spiral Bevel Gears by Rolling-Sliding of Asperity Contact
,”
Friction
,
8
(
6
), pp.
1083
1101
.
40.
Yang
,
W.
,
Huang
,
Y.
,
Zhou
,
Q.
,
Wang
,
J.
,
Jin
,
X.
, and
Keer
,
L. M.
,
2017
, “
Parametric Study on Stressed Volume and Its Application to the Quantification of Rolling Contact Fatigue Performance of Heterogeneous Material
,”
Tribol. Int.
,
107
, pp.
221
232
.
You do not currently have access to this content.