Abstract

The existing fractal contact model fails to solve the problem of online real-time irregular curvilinear contact under mixed lubrication conditions. In this study, a novel arbitrary curve contact model is established, considering the actual operating condition that occurs under mixed lubrication. Furthermore, a new online friction–thermal–load coupling model for an arbitrary curve contact under mixed lubrication conditions is presented, considering the actual operating condition. To investigate the effects of the proposed online friction–thermal–load coupling model, a 30,205 tapered roller bearing with curved contact is examined by reading the real-time key point temperatures using thermocouple. Finally, the effectiveness of the presented model is verified through experiments and comparison.

References

1.
Argatov
,
I. I.
, and
Chai
,
Y.-S.
,
2021
, “
Fretting Wear With Variable Coefficient of Friction in Gross Sliding Conditions
,”
Tribol. Int.
,
153
, p.
106555
.
2.
Simon
,
V. V.
,
2019
, “
Improved Mixed Elastohydrodynamic Lubrication of Hypoid Gears by the Optimization of Manufacture Parameters
,”
Wear
,
438–439
, p.
102722
.
3.
Wettstein
,
A.
,
Kretschmer
,
T.
, and
Matthiesen
,
S.
,
2020
, “
Investigation of Dynamic Friction During Impact Tightening of Bolted Joints
,”
Tribol. Int.
,
146
, p.
106251
.
4.
Ando
,
Y.
, and
Sumiya
,
T.
,
2020
, “
Friction Properties of Micro/Nanogroove Patterns Under Lubricating Conditions
,”
Tribol. Int.
,
151
, p.
106428
.
5.
Bachchhav
,
B.
, and
Bagchi
,
H.
,
2020
, “
Effect of Surface Roughness on Friction and Lubrication Regimes
,”
Mater. Today: Proc.
,
38
, pp.
169
173
. 10.1016/j.matpr.2020.06.252
6.
Bhaumik
,
S.
,
Chowdhury
,
D.
,
Batham
,
A.
,
Sehgal
,
U.
,
Ghosh
,
C.
,
Bhattacharya
,
B.
, and
Datta
,
S.
,
2020
, “
Analysing the Frictional Properties of Micro Dimpled Surface Created by Milling Machine Under Lubricated Condition
,”
Tribol. Int.
,
146
, p.
106260
.
7.
Witte
,
D. C.
,
1973
, “
Operating Torque of Tapered Roller Bearings
,”
ASLE Trans.
,
16
(
1
), pp.
61
67
.
8.
Zhou
,
R.-S.
, and
Hoeprich
,
M. R.
,
1991
, “
Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
113
(
3
), pp.
590
597
.
9.
Blake
,
J. J.
, and
Truman
,
C. E.
,
2004
, “
Measurement of Running Torque of Tapered Roller Bearings
,”
J. Eng. Tribol.
,
218
(
4
), pp.
239
250
.
10.
Tarawneha
,
C. M.
,
Coleb
,
K. D.
,
Wilsonb
,
B. M.
, and
Alnaimata
,
F.
,
2008
, “
Experiments and Models for the Thermal Response of Railroad Tapered-Roller Bearings
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5794
5803
.
11.
Zhou
,
Y. K.
,
Zhu
,
H.
, and
Zuo
,
X.
,
2015
, “
The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,”
Tribol. Int.
,
88
, pp.
8
16
.
12.
Wang
,
S.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1993
, “
A Dynamic Model of the Torque and Heat Generation Rate in Tapered Roller Bearings Under Excessive Sliding Conditions
,”
Tribol. Trans.
,
36
(
4
), pp.
513
524
.
13.
Wang
,
A.-L.
, and
Wang
,
J.-G.
,
2014
, “
Temperature Distribution and Scuffing of Tapered Roller Bearing
,”
Chin. J. Mech. Eng.
,
27
(
6
), pp.
1272
1279
.
14.
Tong
,
V. C.
, and
Hong
,
S. H.
,
2016
, “
The Effect of Angular Misalignment on the Running Torques of Tapered Roller Bearings
,”
Tribol. Int.
,
95
, pp.
76
85
.
15.
Houpert
,
L.
,
2002
, “
Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical, and Experimental Results
,”
Tribol. Trans.
,
45
(
3
), pp.
345
353
.
16.
Renger
,
A.
, and
Johnson
,
K. L.
,
1989
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chap. 4.
17.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
295
, pp.
300
319
.
18.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.
19.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
(
1
), pp.
57
63
.
20.
Zhao
,
Y.
,
Maietta
,
D.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
21.
Li
,
L.
,
Etsion
,
I.
, and
Talke
,
F. E.
,
2010
, “
Contact Area and Static Friction of Rough Surfaces With High Plasticity Index
,”
ASME J. Tribol.
,
132
(
3
), p.
031401
.
22.
Pan
,
W.
,
Li
,
X.
,
Wang
,
L.
,
Mu
,
J.
, and
Yang
,
Z.
,
2017
, “
Influence of Surface Topography on Three-Dimensional Fractal Model of Sliding Friction
,”
AIP Adv.
,
7
(
9
), p.
095321
.
23.
Liu
,
W.
,
Ni
,
H.
,
Wang
,
P.
, and
Zhao
,
B.
,
2020
, “
Analytical Investigation of the Friction Reduction Performance of Longitudinal Vibration Based on the Modified Elastoplastic Contact Model
,”
Tribol. Int.
,
146
, p.
106237
.
24.
Han
,
L.
,
Zhang
,
D.
, and
Wang
,
F.
,
2013
, “
Predicting Film Parameter and Friction Coefficient for Helical Gears Considering Surface Roughness and Load Variation
,”
Tribol. Trans.
,
56
(
1
), pp.
49
57
.
25.
Demkin
,
N. B.
, and
Izmailov
,
V. V.
,
1991
, “
Surface Topography and Properties of Frictional Contacts
,”
Tribol. Int.
,
24
(
1
), pp.
21
24
.
26.
Shi
,
J.
,
Cao
,
X.
, and
Zhu
,
H.
,
2014
, “
Tangential Contact Stiffness of Rough Cylindrical Faying Surfaces Based on the Fractal Theory
,”
ASME J. Tribol.
,
136
(
4
), p.
041401
.
27.
Liu
,
Y.
,
Wang
,
Y.
,
Chen
,
X.
, and
Yu
,
H.
,
2018
, “
A Spherical Conformal Contact Model Considering Frictional and Microscopic Factors is Based on Fractal Theory
,”
Chaos Solitons Fractals
,
111
, pp.
96
107
.
28.
Matuszak
,
A.
,
2000
, “
Factors Influencing Friction in Steel Sheet Forming
,”
J. Mater. Process Technol.
,
106
(
1–3
), pp.
250
253
.
29.
Qian
,
S.
,
Guo
,
D.
,
Liu
,
S.
, and
Lu
,
X.
,
2011
, “
Experimental Investigation of Lubrication Failure of Polyalphaolefin Oil Film at High Slide/Roll Ratios
,”
Tribol. Lett.
,
44
(
2
), pp.
107
115
.
30.
Kletzli
,
D. B.
,
Cusano
,
C.
, and
Conry
,
T. F.
,
1999
, “
Thermally Induced Failures in Railroad Tapered Roller Bearings
,”
Tribol. Trans.
,
42
(
4
), pp.
824
832
.
31.
Yan
,
K.
,
Wang
,
N.-G.
,
Zhai
,
Q.-G.
,
Zhu
,
Y.-S.
,
Zhang
,
J.-H.-
, and
Niu
,
Q.-B.
,
2015
, “
Theoretical and Experimental Investigation on the Thermal Characteristics of Double-Row Tapered Roller Bearings of High Speed Locomotive
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1119
1130
.
32.
Ai
,
S.-Y.
,
Wang
,
W.-Z.
,
Wang
,
Y.-L.
, and
Zhao
,
Z.-Q.
,
2015
, “
Temperature Rise of Double-Row Tapered Roller Bearings Analyzed With the Thermal Network Method
,”
Tribol. Int.
,
87
, pp.
11
22
.
33.
Winer
,
W.
,
Bair
,
S.
, and
Gecim
,
B.
,
1986
, “
Thermal Resistance of a Tapered Roller Bearing
,”
Tribol. Trans.
,
29
(
4
), pp.
539
547
.
34.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication
,”
Wear
,
19
(
1
), pp.
91
108
.
35.
Su
,
C.
, and
Chen
,
W.-F.
,
2021
, “
Thermal Behavior on Motorized Spindle Considering Bearing Thermal Deformation Under Oil-Air Lubrication
,”
J. Manuf. Process.
,
72
, pp.
483
499
.
36.
Huang
,
K.
,
Zhao
,
H.
, and
Chen
,
Q.
,
2008
, “
Research of Fractal Contact Model on Contact Carrying Capacity of Two Cylinders’ Surface
,”
Chin. J. Tribol.
,
28
(
6
), pp.
529
533
.
37.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.
38.
Pan
,
W.-J.
,
Li
,
X.
,
Wang
,
L.
,
Guo
,
N.
, and
Mu
,
J.
,
2017
, “
A Normal Contact Stiffness Fractal Prediction Model of Dry-Friction Rough Surface and Experimental Verification
,”
Eur. J. Mech. A: Solids
,
66
, pp.
94
102
.
39.
Pan
,
W.-J.
,
Li
,
X.
,
Wang
,
L.
,
Guo
,
N.
, and
Yang
,
Z.
,
2018
, “
Influence of Contact Stiffness of Joint Surfaces on Oscillation System Based on the Fractal Theory
,”
Arch. Appl. Mech.
,
88
(
4
), pp.
525
541
.
40.
Moes
,
H.
,
1992
, “
Optimum Similarity Analysis With Applications to Elastohydrodynamic Lubrication
,”
Wear
,
159
(
1
), pp.
57
66
.
41.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng., Part I
,
185
(
1
), pp.
625
634
.
42.
Gelinck
,
E. R. M.
, and
Schipper
,
D. J.
,
2000
, “
Calculation of Stribeck Curves for Line Contacts
,”
Tribol. Int.
,
33
(
3–4
), pp.
175
181
.
43.
Liu
,
Q.
,
Napel
,
W. T.
,
Tripp
,
J. H.
,
Lugt
,
P. M.
, and
Meeuwenoord
,
R.
,
2009
, “
Friction in Highly Loaded Mixed Lubricated Point Contacts
,”
Tribol. Trans.
,
52
(
3
), pp.
360
369
.
44.
Gelinck
,
E. R. M.
, and
Schipper
,
D. J.
,
1999
, “
Deformation of Rough Line Contacts
,”
ASME J. Tribol.
,
121
(
3
), pp.
449
454
.
You do not currently have access to this content.