Abstract

The heat generated during the bearing working process would greatly affect the working life and stability of bearing and mechanical transmission system. To analyze the heat generation of cylindrical roller bearings (CRBs), a theoretical calculation model of bearing friction torques is proposed. The differences in friction torque between the flexible and rigid CRBs are compared. The waviness error on the rings and rollers is considered. To study the bearing transient temperature characteristics, a thermal network is established, and the transient heat balance equations are solved. An optimization algorithm for manufacturing parameters of a CRB with the low friction torque is conducted, in which the waviness error is considered. The results show that the radial force, speed, and waviness can greatly affect the friction torque and temperature characteristics of CRB. The friction torque and outer ring temperature increase with the increment of radial force, speed, and waviness amplitude and order. The friction torque and temperature of CRB can be effectively reduced by changing the bearing manufacturing parameters. This study can provide some guidance to the optimal design method of CRB with the low friction torque.

References

1.
Liu
,
J.
,
Tang
,
C.
, and
Pan
,
G.
,
2021
, “
Dynamic Modeling and Simulation of a Flexible-Rotor Ball Bearing System
,”
J. Vib. Control.
doi: 10.1177/10775463211034347
2.
Liu
,
J.
,
2020
, “
A Dynamic Modelling Method of a Rotor-Roller Bearing-Housing System With a Localized Fault Including the Additional Excitation Zone
,”
J. Sound Vib.
,
469
, p.
115144
.
3.
Liu
,
J.
, and
Shao
,
Y.
,
2018
, “
An Improved Analytical Model for a Lubricated Roller Bearing Including a Localized Defect With Different Edge Shapes
,”
J. Vib. Control
,
24
(
17
), pp.
3894
3907
.
4.
Liu
,
J.
,
Xu
,
Y.
, and
Pan
,
G.
,
2021
, “
A Combined Acoustic and Dynamic Model of a Defective Ball Bearing
,”
J. Sound Vib.
,
501
, p.
116029
.
5.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
,
SKF Industries Inc
,
Philadelphia, PA
.
6.
Zhou
,
R. S.
, and
Hoeprich
,
M. R.
,
1991
, “
Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
113
(
3
), pp.
590
597
.
7.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
, 4th ed.,
John Wiley and Sons Inc.
,
Hoboken, NJ
.
8.
Houpert
,
L.
,
2002
, “
Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical and Experimental Results
,”
Tribol. Trans.
,
45
(
3
), pp.
345
353
.
9.
Kanatsu
,
M.
, and
Ohta
,
H.
,
2008
, “
Running Torque of Ball Bearings With Polymer Lubricant (Running Torque Formulas of Deep Groove Ball Bearings Under Axial Loads)
,”
ASME J. Tribol.
,
130
(
4
), p.
041507
.
10.
Bălan
,
M. R. D.
,
Stamate
,
V. C.
,
Houpert
,
L.
, and
Olaru
,
D. N.
,
2014
, “
The Influence of the Lubricant Viscosity on the Rolling Friction Torque
,”
Tribol. Int.
,
72
, pp.
1
12
.
11.
Jin
,
C.
,
Wu
,
B.
, and
Hu
,
Y.
,
2012
, “
Heat Generation Modeling of Ball Bearing Based on Internal Load Distribution
,”
Tribol. Int.
,
45
(
1
), pp.
8
15
.
12.
Pouly
,
F.
,
Changenet
,
C.
,
Ville
,
F.
,
Velex
,
P.
, and
Damiens
,
B.
,
2010
, “
Power Loss Predictions in High-Speed Rolling Element Bearings Using Thermal Networks
,”
Tribol. Trans.
,
53
(
6
), pp.
957
967
.
13.
Yan
,
K.
,
Wang
,
N.
,
Zhai
,
Q.
,
Zhu
,
Y.
,
Zhang
,
J.
, and
Niu
,
Q.
,
2015
, “
Theoretical and Experimental Investigation on the Thermal Characteristics of Double-Row Tapered Roller Bearings of High Speed Locomotive
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1119
1130
.
14.
Takabi
,
J.
, and
Khonsari
,
M. M.
,
2013
, “
Experimental Testing and Thermal Analysis of Ball Bearings
,”
Tribol. Int.
,
60
, pp.
93
103
.
15.
Jilu
,
F.
,
Zhili
,
S.
, and
Hongzhe
,
S.
,
2017
, “
Optimization of Structure Parameters for Angular Contact Ball Bearings Based on Kriging Model and Particle Swarm Optimization Algorithm
,”
J. Mech. Eng. Sci.
,
231
(
23
), pp.
4298
4308
.
16.
Liu
,
J.
,
Tang
,
C.
,
Wu
,
H.
,
Xu
,
Z.
, and
Wang
,
L.
,
2019
, “
An Analytical Calculation Method of the Load Distribution and Stiffness of an Angular Contact Ball Bearing
,”
Mech. Mach. Theory
,
142
, p.
103597
.
17.
Liu
,
J.
,
Tang
,
C.
, and
Shao
,
Y.
,
2019
, “
An Innovative Dynamic Model for Vibration Analysis of a Flexible Roller Bearing
,”
Mech. Mach. Theory
,
135
, pp.
27
39
.
18.
Liu
,
J.
,
Li
,
X.
,
Ding
,
S.
, and
Pang
,
R.
,
2020
, “
A Time-Varying Friction Moment Calculation Method of an Angular Contact Ball Bearing With the Waviness Error
,”
Mech. Mach. Theory
,
148
, p.
103799
.
19.
Chen
,
G.
,
Li
,
J.
, and
Zhang
,
C.
,
1998
, “
Analysis of the Interaction Between High Speed Bearing Components
,”
Mech. Sci. Technol.
,
17
(
2
), pp.
268
270
.
20.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis-Essential Concepts of Bearing Technology
, 5th ed.,
Taylor and Francis
,
New York
.
21.
Aihara
,
S.
,
1987
, “
A new Running Torque Formula for Tapered Roller Bearings Under Axial Load
,”
ASME J. Tribol.
,
109
(
3
), pp.
471
477
.
22.
Shi
,
Z.
,
Liu
,
J.
,
Li
,
H.
,
Zhang
,
Q.
, and
Xiao
,
G.
,
2022
, “
Dynamic Simulation of a Planet Roller Bearing Considering the Cage Bridge Crack
,”
Eng. Fail. Anal.
,
131
, p.
105849
.
23.
Liu
,
J.
, and
Xu
,
Z.
,
2022
, “
A Simulation Investigation of Lubricating Characteristics for a Cylindrical Roller Bearing of a High-Power Gearbox
,”
Tribol. Int.
,
167
, p.
107373
.
24.
Liu
,
J.
,
Wang
,
L.
, and
Shi
,
Z.
,
2022
, “
Dynamic Modelling of the Defect Extension and Appearance in a Cylindrical Roller Bearing
,”
Mech. Syst. Signal Process
,
173
, p.
109040
.
25.
Yang
,
S. M.
, and
Tao
,
W. S.
,
2006
,
Heat Transfer
,
Higher Education Press
,
Beijing, China
.
26.
Welty
,
J.
,
Rorrer
,
G. L.
, and
Foster
,
D. G.
,
2014
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons Inc.
,
Hoboken, NJ
.
27.
Xue
,
Z. S.
,
Hu
,
X. Q.
, and
Zhao
,
Y.
,
2013
, “
Analysis on Thermal Field for Angular Contact Ball Bearings Considering Thermal Contact Resistance of Coupling Surfaces
,”
Bearing
,
5
, pp.
34
37
.
28.
Guth
,
A. H.
,
2007
, “
Eternal Inflation and Its Implications
,”
J. Phys. A Math. Theor.
,
40
(
25
), pp.
6811
6826
.
You do not currently have access to this content.