Abstract

Wear properties of LM13 alloy-based composites were studied by using boron carbide (B4C) and ilmenite particles (FeTiO3) separately as reinforcement. The different weight percentage of reinforcement (5 wt%, 10 wt%, and 15 wt%) was added to the base alloy through stir-casting. A comparison of B4C reinforced composites (LB composites) and FeTiO3 reinforced composites (LI composites) was done on the basis of interfacial bonding, refinement/morphology of eutectic silicon, friction, and wear behavior (both at room temperature and elevated temperature conditions). Microstructural analysis revealed uniform distribution of ceramic particles in the matrix. Significant reduction in grain size and change in morphology was obtained for LB composites whereas strong interfacial bonding was obtained for LI composites. Higher hardness, lower wear-rate, and higher coefficient of friction (COF) values were shown by LB composites. A decrease in COF for LI composites (at room as well as high temperatures) corresponded to the lubricity effect of ilmenite particles. At room temperature, wear track and debris showed a change in wear mechanism from abrasive to delamination wear with an increase in load from 10 N to 50 N. Under elevated temperature conditions, these mechanisms were combined with oxidation wear.

References

1.
Moazzam
,
P.
,
Luciano
,
G.
,
Razmjou
,
A.
,
Akbari
,
E.
,
Ul’yanov
,
P. G.
, and
Mahanty
,
S.
,
2019
, “
Effect of Molecular-Scale Surface Energy Alteration of Aluminium on Its Corrosion Resistance Behaviour
,”
Colloids Surf. A
,
562
, pp.
26
33
.
2.
Hosseini
,
V. A.
,
Shabestari
,
S. G.
, and
Gholizadeh
,
R.
,
2013
, “
Study on the Effect of Cooling Rate on the Solidification Parameters, Microstructure, and Mechanical Properties of LM13 Alloy Using Cooling Curve Thermal Analysis Technique
,”
Mater. Des.
,
50
, pp.
7
14
.
3.
Chi
,
Y.
,
Gu
,
G.
,
Yu
,
H.
, and
Chen
,
C.
,
2018
, “
Laser Surface Alloying on Aluminum and Its Alloys: A Review
,”
Opt. Lasers Eng.
,
100
, pp.
23
37
.
4.
Prasad
,
S. V.
, and
Asthana
,
R.
,
2004
, “
Aluminum Metal–Matrix Composites for Automotive Applications: Tribological Considerations
,”
Tribol. Lett.
,
17
(
3
), pp.
445
453
.
5.
Gupta
,
R.
,
Sharma
,
S.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2020
, “
A Comparative Study of Dry Sliding Wear Behaviour of Sillimanite and Rutile Reinforced LM27 Aluminium Alloy Composites
,”
Mater. Res. Exp.
,
7
(
1
), p.
016540
.
6.
Gupta
,
R.
,
Sharma
,
S.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2020
, “
Wear Studies of Hybrid AMCs Reinforced With Naturally Occurring Sillimanite and Rutile Ceramic Particles for Brake-Rotor Applications
,”
Ceram. Int.
,
46
(
10B
), pp.
16849
16859
.
7.
Sharma
,
S.
,
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2021
, “
Influence of Two Different Range of Sillimanite Particle Reinforcement on Tribological Characteristics of LM30 Based Composites Under Elevated Temperature Conditions
,”
Mater. Chem. Phys.
,
258
, p.
123988
.
8.
Hosseini
,
N.
,
Karimzadeh
,
F.
,
Abbasi
,
M. H.
, and
Enayati
,
M. H.
,
2012
, “
A Comparative Study on the Wear Properties of Coarse-Grained Al6061 Alloy and Nanostructured Al6061–Al2O3 Composites
,”
Tribol. Int.
,
54
, pp.
58
67
.
9.
Sharifi
,
E. M.
, and
Karimzadeh
,
F.
,
2011
, “
Wear Behavior of Aluminum Matrix Hybrid Nanocomposites Fabricated by Powder Metallurgy
,”
Wear
,
271
(
7–8
), pp.
1072
1079
.
10.
Patel
,
S. K.
,
Nateriya
,
R.
, and
Dixit
,
G.
,
2015
, “
Microstructural Analysis, Micro Hardness and Compressive Behaviour of Dual Reinforced Particles ADC-12 Alloy Composite
,”
Int. J. Eng. Technol. Manag. Res.
,
1
(
1
), pp.
23
34
.
11.
Mohanavel
,
V.
,
Ali
,
K. S. A.
,
Prasath
,
S.
,
Sathish
,
T.
, and
Ravichandran
,
M.
,
2020
, “
Microstructural and Tribological Characteristics of AA6351/Si3N4 Composites Manufactured by Stir Casting
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14662
14672
.
12.
Dey
,
D.
,
Bhowmik
,
A.
, and
Biswas
,
A.
,
2022
, “
Effect of SiC Content on Mechanical and Tribological Properties of Al2024–SiC Composites
,”
Silicon
,
14
(
1
), pp.
1
11
.
13.
Hynes
,
N. R. J.
,
Raja
,
S.
,
Tharmaraj
,
R.
,
Pruncu
,
C. I.
, and
Dispinar
,
D.
,
2020
, “
Mechanical and Tribological Characteristics of Boron Carbide Reinforcement of AA6061 Matrix Composite
,”
J. Brazil. Soc. Mech. Sci. Eng.
,
42
(
4
), p.
155
.
14.
Natrayan
,
L.
, and
Kumar
,
M. S.
,
2020
, “
Influence of Silicon Carbide on Tribological Behaviour of AA2024/Al2O3/SiC/Gr Hybrid Metal Matrix Squeeze Cast Composite Using Taguchi Technique
,”
Mater. Res. Exp.
,
6
(
12
), p.
1265f9
.
15.
Singhal
,
V.
, and
Pandey
,
O. P.
,
2021
, “
Utilization of Natural Mineral Ilmenite-Reinforced Composites for the Dry Sliding Application
,”
Int. J. Met.
, pp.
1
19
.
16.
Kumar
,
J.
,
Singh
,
D.
,
Kalsi
,
N. S.
,
Sharma
,
S.
,
Mia
,
M.
,
Singh
,
J.
,
Rahman
,
M. A.
,
Mashood
,
A.
, and
Rao
,
K. V.
,
2021
, “
Investigation on the Mechanical, Tribological, Morphological and Machinability Behavior of Stir-Casted Al/SiC/Mo Reinforced MMCs
,”
J. Mater. Res. Technol.
,
12
, pp.
930
946
.
17.
Al-Sabagh
,
A. M.
,
Abdou
,
M. I.
,
Migahed
,
M. A.
,
Fadl
,
A. M.
,
Farag
,
A. A.
,
Mohammedy
,
M. M.
,
Abd-Elwanees
,
S.
, and
Deiab
,
A.
,
2018
, “
Influence of Ilmenite Ore Particles As Pigment on the Anticorrosion and Mechanical Performance Properties of Polyamine Cured Epoxy for Internal Coating of Gas Transmission Pipelines
,”
Egypt. J. Pet.
,
27
(
4
), pp.
427
436
.
18.
Elwan
,
M.
,
Fathy
,
A.
,
Wagih
,
A.
,
Essa
,
A. R. S.
,
Abu-Oqail
,
A.
, and
E El-nikhaily
,
A.
,
2020
, “
Fabrication and Investigation on the Properties of Ilmenite (FeTiO3)-Based Al Composite by Accumulative Roll Bonding
,”
J. Compos. Mater.
,
54
(
10
), pp.
1259
1271
.
19.
Singh
,
G.
, and
Goyal
,
S.
,
2018
, “
Microstructure and Mechanical Behavior of AA6082-T6/SiC/B4C-Based Aluminum Hybrid Composites
,”
Part. Sci. Technol.
,
36
(
2
), pp.
154
161
.
20.
Pozdniakov
,
A. V.
,
Lotfy
,
A.
,
Qadir
,
A.
,
Shalaby
,
E.
,
Khomutov
,
M. G.
,
Churyumov
,
A. Y.
, and
Zolotorevskiy
,
V. S.
,
2017
, “
Development of Al–5Cu/B4C Composites With Low Coefficient of Thermal Expansion for Automotive Application
,”
Mater. Sci. Eng. A
,
688
, pp.
1
8
.
21.
Saghafian
,
H.
,
Shabestari
,
S. G.
,
Ghadami
,
S.
, and
Ghoncheh
,
M. H.
,
2017
, “
Effects of Iron, Manganese, and Cooling Rate on Microstructure and Dry Sliding Wear Behavior of LM13 Aluminum Alloy
,”
Tribol. Trans.
,
60
(
5
), pp.
888
901
.
22.
Gupta
,
R.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2021
, “
Comparison of Wear Behaviour of LM13 Al−Si Alloy Based Composites Reinforced With Synthetic (B4C) and Natural (Ilmenite) Ceramic Particles
,”
Trans. Nonferrous Met. Soc. China
,
31
(
12
), pp.
3613
3625
.
23.
Abdou
,
M. I.
,
Al-Sabagh
,
A. M.
,
Ahmed
,
H. E.
, and
Fadl
,
A. M.
,
2018
, “
Impact of Barite and Ilmenite Mixture on Enhancing the Drilling Mud Weight
,”
Egypt. J. Pet.
,
27
(
4
), pp.
955
967
.
24.
Poovazhagan
,
L.
,
Kalaichelvan
,
K.
, and
Sornakumar
,
T.
,
2016
, “
Processing and Performance Characteristics of Aluminum-Nano Boron Carbide Metal Matrix Nanocomposites
,”
Mater. Manuf. Process.
,
31
(
10
), pp.
1275
1285
.
25.
Gates
,
J. D.
,
Dargusch
,
M. S.
,
Walsh
,
J. J.
,
Field
,
S. L.
,
Hermand
,
M. J. P.
,
Delaup
,
B. G.
, and
Saad
,
J. R.
,
2008
, “
Effect of Abrasive Mineral on Alloy Performance in the Ball Mill Abrasion Test
,”
Wear
,
265
(
5–6
), pp.
865
870
.
26.
Immanuel
,
R. J.
, and
Panigrahi
,
S. K.
,
2015
, “
Influence of Cryorolling on Microstructure and Mechanical Properties of a Cast Hypoeutectic Al–Si Alloy
,”
Mater. Sci. Eng. A
,
640
, pp.
424
435
.
27.
Edacherian
,
A.
,
Algahtani
,
A.
, and
Tirth
,
V.
,
2018
, “
Investigations of the Tribological Performance of A390 Alloy Hybrid Aluminum Matrix Composite
,”
Materials (Basel)
,
11
(
12
), p.
2524
.
28.
Sharma
,
S.
,
Nanda
,
T.
, and
Pandey
,
O. P.
,
2018
, “
Effect of Dual Particle Size (DPS) on Dry Sliding Wear Behaviour of LM30/Sillimanite Composites
,”
Tribol. Int.
,
123
, pp.
142
154
.
29.
Kim
,
J. K.
, and
Rohatgi
,
P. K.
,
2000
, “
Nucleation on Ceramic Particles in Cast Metal–Matrix Composites
,”
Metall. Mater. Trans. A
,
31
, pp.
1295
1304
.
30.
Li
,
Q.
,
Qiu
,
F.
,
Dong
,
B. X.
,
Geng
,
R.
,
Lv
,
M.
,
Zhao
,
Q. L.
, and
Jiang
,
Q. C.
,
2018
, “
Fabrication, Microstructure Refinement and Strengthening Mechanisms of Nanosized SiCP/Al Composites Assisted Ultrasonic Vibration
,”
Mater. Sci. Eng. A
,
735
(
26
), pp.
310
317
.
31.
Ghandvar
,
H.
,
Idris
,
M. H.
,
Ahmad
,
N.
, and
Emamy
,
M.
,
2018
, “
Effect of Gadolinium Addition on Microstructural Evolution and Solidification Characteristics of Al–15%Mg2Si In-Situ Composite
,”
Mater. Charact.
,
135
, pp.
57
70
.
32.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
,
2008
, “
Deformation Mechanisms of MMCs Under Indentation
,”
Compos. Sci. Technol.
,
68
(
6
), pp.
1304
1312
.
33.
Bradbury
,
C. R.
,
Gomon
,
J.
,
Kollo
,
L.
,
Kwon
,
H.
, and
Leparoux
,
M.
,
2014
, “
Hardness of Multi-wall Carbon Nanotubes Reinforced Aluminium Matrix Composites
,”
J. Alloys Compd.
,
585
, pp.
362
367
.
34.
Lakshmikanthan
,
A.
,
Bontha
,
S.
,
Krishna
,
M.
,
Koppad
,
P. G.
, and
Ramprabhu
,
T.
,
2019
, “
Microstructure, Mechanical and Wear Properties of the A357 Composites Reinforced With Dual Sized SiC Particles
,”
J. Alloys Compd.
,
786
, pp.
570
580
.
35.
Xiao
,
P.
,
Gao
,
Y.
,
Xu
,
F.
,
Yang
,
C.
,
Li
,
Y.
,
Liu
,
Z.
, and
Zheng
,
Q.
,
2018
, “
Tribological Behavior of In-Situ Nanosized TiB2 Particles Reinforced AZ91 Matrix Composite
,”
Tribiol. Int.
,
128
, pp.
130
139
.
36.
Chen
,
H.
, and
Alpas
,
A. T.
,
2000
, “
Sliding Wear Map for the Magnesium Alloy Mg–9Al–0.9Zn (AZ91)
,”
Wear
,
246
(
1–2
), pp.
106
116
.
37.
Zhou
,
H.
,
Yao
,
P.
,
Xiao
,
Y.
,
Fan
,
K.
,
Zhang
,
Z.
,
Gong
,
T.
,
Zhao
,
L.
,
Deng
,
M.
,
Liu
,
C.
, and
Ling
,
P.
,
2019
, “
Friction and Wear Maps of Copper Metal Matrix Composites With Different Iron Volume Content
,”
Tribol. Int.
,
132
, pp.
199
210
.
38.
Nemati
,
N.
,
Emamy
,
M.
,
Penkov
,
O. V.
,
Kim
,
J.
, and
Kim
,
D.
,
2016
, “
Mechanical and High Temperature Wear Properties of Extruded Al Composite Reinforced With Al13Fe4 CMA Nanoparticles
,”
Mater. Des.
,
90
, pp.
532
544
.
39.
Jerome
,
S.
,
Ravisankar
,
B.
,
Mahato
,
P. K.
, and
Natarajan
,
S.
,
2010
, “
Synthesis and Evaluation of Mechanical and High Temperature Tribological Properties of In-Situ Al–TiC Composites
,”
Tribol. Int.
,
43
(
11
), pp.
2029
2036
.
40.
Mandal
,
D.
,
Dutta
,
B. K.
, and
Panigrahi
,
S. C.
,
2004
, “
Wear and Friction Behavior of Stir Cast Aluminium-Base Short Steel Fiber Reinforced Composites
,”
Wear
,
257
(
7–8
), pp.
654
664
.
41.
Chang
,
F.
,
Gu
,
D.
,
Dai
,
D.
, and
Yuan
,
P.
,
2015
, “
Selective Laser Melting of In-Situ Al4SiC4 + SiC Hybrid Reinforced Al Matrix Composites: Influence of Starting SiC Particle Size
,”
Surf. Coat. Technol.
,
272
, pp.
15
24
.
42.
Rajaram
,
G.
,
Kumaran
,
S.
,
Rao
,
T. S.
, and
Kamaraj
,
M.
,
2010
, “
Studies on High Temperature Wear and Its Mechanism of Al–Si/Graphite Composite Under Dry Sliding Conditions
,”
Tribol. Int.
,
43
(
11
), pp.
2152
2158
.
43.
Uthayakumar
,
M.
,
Aravindan
,
S.
, and
Rajkumar
,
K.
,
2013
, “
Wear Performance of Al–SiC–B4C Hybrid Composites Under Dry Sliding Conditions
,”
Mater. Des.
,
47
, pp.
456
464
.
44.
Zhou
,
Z.
,
Liu
,
X.
,
Zhuang
,
S.
,
Yang
,
X.
,
Wang
,
M.
, and
Sun
,
C.
,
2019
, “
Preparation and High Temperature Tribological Properties of Laser In-Situ Synthesized Self-Lubricating Composite Coatings Containing Metal Sulfides on Ti6Al4 V Alloy
,”
Appl. Surf. Sci.
,
481
, pp.
209
218
.
45.
Zhu
,
H.
,
Jar
,
C.
,
Song
,
J.
,
Zhao
,
J.
,
Li
,
J.
, and
Xie
,
Z.
,
2012
, “
High Temperature Dry Sliding Friction and Wear Behavior of Aluminum Matrix Composites (Al3Zr+α-Al2O3)/Al
,”
Tribol. Int.
,
48
, pp.
78
86
.
46.
Nyanor
,
P.
,
El-Kady
,
O.
,
Yehia
,
H. M.
,
Hamada
,
A. S.
,
Nakamura
,
K.
, and
Hassan
,
M. A.
,
2021
, “
Effect of Carbon Nanotube (CNT) Content on the Hardness, Wear Resistance and Thermal Expansion of In-Situ Reduced Gaphene Oxide (RGO)–Reinforced Aluminum Matrix Composites
,”
Met. Mater. Int.
,
27
(
5
), pp.
1315
1326
.
47.
Sankaranarayanan
,
S.
,
Sabat
,
R. K.
,
Jayalakshmi
,
S.
,
Suwas
,
S.
, and
Gupta
,
M.
,
2014
, “
Effect of Nanoscale Boron Carbide Particle Addition on the Microstructural Evolution and Mechanical Response of Pure Magnesium
,”
Mater. Des.
,
56
, pp.
428
436
.
48.
Li
,
S.
,
Sun
,
B.
,
Imai
,
H.
,
Mimoto
,
T.
, and
Kondoh
,
K.
,
2013
, “
Powder Metallurgy Titanium Metal Matrix Composites Reinforced With Carbon Nanotubes and Graphite
,”
Compos. Part A Appl. Sci. Manuf.
,
48
, pp.
57
66
.
You do not currently have access to this content.