Abstract

In order to study the influence of current on the temperature rise and wear mechanism of the copper–graphite friction pair, the pin-disc current-carrying friction experiments were carried out under different current conditions. The friction coefficient, temperature, and wear topography were measured, and the energy dispersive spectroscopy (EDS) analysis was conducted as well. The results show that the temperature of the friction pair rises rapidly at first, then the rising speed slows down, and finally reaches dynamic thermal equilibrium in the process of test. The temperature rise at the stable stage increases with the current. The main wear mechanism under low current is material spalling, and it turns to melt ejection and arc erosion under high current. The change of the lubricating film causes the complex wear behavior. With the increase of the current, the amount of transferred graphite increases, but the arc ablation becomes severe, and the graphite lubrication film gradually ruptures, which in turn increases the friction coefficient and makes the wear more severe. The results have a great significance for the anti-friction and wear-resistant design of the current-carrying friction pair.

References

1.
Wang
,
P.
,
Zhang
,
H. B.
,
Yin
,
J.
,
Xiong
,
X.
,
Tan
,
C.
,
Deng
,
C. Y.
, and
Yan
,
Z. Q.
,
2017
, “
Wear and Friction Behaviours of Copper Mesh and Flaky Graphite-Modified Carbon/Carbon Composite for Sliding Contact Material Under Electric Current
,”
Wear
,
380–381
, pp.
59
65
.
2.
Grandin
,
M.
, and
Wiklund
,
U.
,
2018
, “
Influence of Mechanical and Electrical Load on a Copper/Copper–Graphite Sliding Electrical Contact
,”
Tribol. Int.
,
121
, pp.
1
9
.
3.
Yang
,
Z. H.
,
Ge
,
Y. X.
,
Zhang
,
X.
,
Shangguan
,
B.
,
Zhang
,
Y. Z.
, and
Zhang
,
J. W.
,
2019
, “
Effect of Carbon Content on Friction and Wear Properties of Copper Matrix Composites at High Speed Current-Carrying
,”
Materials
,
12
(
18
), p.
2881
.
4.
Yasar
,
I.
,
Canakci
,
A.
, and
Arslan
,
F.
,
2007
, “
The Effect of Brush Spring Pressure on the Wear Behaviour of Copper–Graphite Brushes With Electrical Current
,”
Tribol. Int.
,
40
(
9
), pp.
1381
1386
.
5.
Lin
,
X. Z.
,
Zhu
,
M. H.
,
Mo
,
J. L.
,
Chen
,
G. X.
,
Jin
,
X. S.
, and
Zhou
,
Z. R.
,
2011
, “
Tribological and Electric-Arc Behaviors of Carbon/Copper Pair During Sliding Friction Process With Electric Current Applied
,”
Trans. Nonferrous Met. Soc. China
,
21
(
2
), pp.
292
299
.
6.
Chen
,
J. X.
,
Yang
,
F.
,
Luo
,
K. Y.
,
Zhu
,
M. L.
,
Wu
,
Y.
, and
Rong
,
M. Z.
,
2015
, “
Experimental Investigation on the Electrical Contact Behavior of Rolling Contact Connector
,”
Rev. Sci. Instrum.
,
86
(
12
), p.
125110
.
7.
Hu
,
Y.
,
Chen
,
G. X.
,
Zhang
,
S. D.
,
Gao
,
G. Q.
,
Wu
,
G. N.
,
Zhang
,
W. H.
, and
Zhou
,
Z. R.
,
2017
, “
Comparative Investigation Into the Friction and Wear Behaviours of a Cu–Ag Contact Wire/Carbon Strip and a Pure Copper Contact Wire/Carbon Strip at High Speeds
,”
Wear
,
376–377
, pp.
1552
1557
.
8.
Poljanec
,
D.
, and
Kalin
,
M.
,
2018
, “
Influence of the Contact Parameters and Several Graphite Materials on the Tribological Behaviour of Graphite/Copper Two-Disc Electrical Contacts
,”
Tribol. Int.
,
126
, pp.
192
205
.
9.
Zhou
,
Y. X.
,
Xue
,
Y. L.
, and
Zhou
,
K.
,
2019
, “
Failure Analysis of Arc Ablated Tungsten-Copper Electrical Contacts
,”
Vacuum
,
164
, pp.
390
395
.
10.
Mei
,
G. M.
,
Fu
,
W. M.
,
Chen
,
G. X.
, and
Zhang
,
W. H.
,
2020
, “
Effect of High-Density Current on the Wear of Carbon Sliders Against Cu–Ag Wires
,”
Wear
,
452–453
, p.
203275
.
11.
Abdel-Aal
,
H.
,
2020
, “
Temperature Rise in Sliding Solids: Influence of Contact Pressure and Temperature on Thermal Conduction
,”
Tribol. Lett.
,
68
(
1
), p.
31
.
12.
Poljanec
,
D.
,
Kalin
,
M.
, and
Kumar
,
L.
,
2018
, “
Influence of Contact Parameters on the Tribological Behaviour of Various Graphite/Graphite Sliding Electrical Contacts
,”
Wear
,
406–407
, pp.
75
83
.
13.
Kubota
,
Y.
,
Nagasaka
,
S.
,
Miyauchi
,
T.
,
Yamashita
,
C.
, and
Kakishima
,
H.
,
2013
, “
Sliding Wear Behavior of Copper Alloy Impregnated C/C Composites Under an Electrical Current
,”
Wear
,
302
(
1–2
), pp.
1492
1498
.
14.
Li
,
Y. C.
,
Huang
,
J. X.
,
Wang
,
M.
,
Liu
,
J. W.
,
Wang
,
C. Y.
,
Zhong
,
H. H.
, and
Jiang
,
Y.
,
2021
, “
Microstructure and Current Carrying Wear Behaviors of Copper/Sintered–Carbon Composites for Pantograph Sliders
,”
Met. Mater. Int.
,
27
(
9
), pp.
3398
3408
.
15.
Mei
,
G. M.
,
2020
, “
Tribological Performance of Rigid Overhead Lines Against Pantograph Sliders Under DC Passage
,”
Tribol. Int.
,
151
, p.
106538
.
16.
Yang
,
H. J.
,
Wang
,
K.
,
Liu
,
Y. H.
,
Fu
,
L.
,
Cui
,
X. L.
,
Jiang
,
G.
, and
Hu
,
B.
,
2020
, “
The Formation of the Delamination Wear of the Pure Carbon Strip and Its Influence on the Friction and Wear Properties of the Pantograph and Catenary System
,”
Wear
,
454–455
, p.
203343
.
17.
Deng
,
C. Y.
,
Zhang
,
H. B.
,
Yin
,
J.
,
Xiong
,
X.
,
Wang
,
P.
,
Sun
,
M.
,
Wu
,
X. G.
, and
Li
,
W. Q.
,
2021
, “
Effect of Pressure−Velocity Factor on Sliding Friction and Wear of Cf/PF-Cu Composites
,”
Trans. Nonferrous Met. Soc. China
,
31
(
3
), pp.
683
690
.
18.
Ding
,
T.
,
Chen
,
G. X.
,
Bu
,
J.
, and
Zhang
,
W. H.
,
2011
, “
Effect of Temperature and Arc Discharge on Friction and Wear Behaviours of Carbon Strip/Copper Contact Wire in Pantograph–Catenary Systems
,”
Wear
,
271
(
9–10
), pp.
1629
1636
.
19.
Liu
,
R. T.
,
Cheng
,
K.
,
Chen
,
J.
,
Xiong
,
X.
, and
Lin
,
X. Y.
,
2020
, “
Friction and Wear Properties of High Temperature and Low Temperature Sintered Copper–Graphite Brushes at Different Ambient Temperatures
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
7288
7296
.
20.
Plesca
,
A.
,
2014
, “
Thermal Analysis of Sliding Electrical Contacts With Mechanical Friction in Steady State Conditions
,”
Int. J. Therm. Sci.
,
84
, pp.
125
133
.
21.
Dong
,
L.
,
Lewis
,
R.
,
Li
,
C. X.
,
Zhu
,
W. B.
, and
Wang
,
H. S.
,
2015
, “
Finite Element Assessment of the Temperature Field Couple Under Joule Heat and Friction Heat Between a Third Rail and Collector Shoe
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
9
), pp.
1086
1094
.
22.
Deng
,
C. Y.
,
Yin
,
J.
,
Zhang
,
H. B.
,
Xiong
,
X.
,
Wang
,
P.
, and
Sun
,
M.
,
2017
, “
The Tribological Properties of Cf/Cu/C Composites Under Applied Electric Current
,”
Tribol. Int.
,
116
, pp.
84
94
.
23.
Chen
,
G. X.
,
Hu
,
Y.
,
Dong
,
B. J.
,
Yang
,
H. J.
,
Gao
,
G. Q.
,
Wu
,
G. N.
,
Zhang
,
W. H.
, and
Zhou
,
Z. R.
,
2017
, “
Experimental Study on the Temperature of the Contact Strip in Sliding Electric Contact
,”
Proc. Inst. Mech. Eng., Part J
,
231
(
10
), pp.
1268
1275
.
24.
Shangguan
,
B.
,
Zhang
,
Y. Z.
,
Xing
,
J. D.
,
Sun
,
L. M.
,
Qiu
,
M.
,
Niu
,
Y. P.
, and
Hou
,
M.
,
2008
, “
Effect of Current Density on Surface Temperature and Tribology Behavior of Chromium Bronze/Brass Couple
,”
Trans. Nonferrous Met. Soc. China
,
18
(
7
), pp.
1237
1241
.
25.
Wang
,
P.
,
Yue
,
W.
,
Lu
,
Z. B.
,
Zhang
,
G. G.
, and
Zhu
,
L. N.
,
2018
, “
Friction and Wear Properties of MoS2-Based Coatings Sliding Against Cu and Al Under Electric Current
,”
Tribol. Int.
,
127
, pp.
379
388
.
You do not currently have access to this content.