Abstract

A side contact model of joint is proposed, which considers the horizontal distance distribution and side contact between the asperities on the contact surfaces. The Leica DCM3D microscope is applied to collect the profile data of the grinding surfaces. After analyzing the profile data by the statistical method, it is found that the horizontal distance distributions between asperities on the contact surfaces show an approximate normal distribution. Based on the discovery, a contact model of joint considering the horizontal distance distribution and side contact between asperities is established by statistical theory. The simulation results of the model show that the dimensionless tangential contact stiffness of joint is always lower than that of the GZQ model under the condition of the same dimensionless average distance of contact surfaces and P/T. When the standard deviation of horizontal distance between asperities decreases, both the dimensionless tangential contact stiffness of joint and the dimensionless normal contact stiffness increase. The finite element analysis and the modal experiment based on the contact model are carried out. It is found that the first three modal frequencies and modal shapes obtained from finite element analysis are in good agreement with those from the modal experiment, and compared with the modal frequencies from experiment, the modal frequencies from finite element analysis based on the model proposed in this paper show less error than those of finite element analysis based on the GZQ model. Therefore, this model proposed in this paper can more accurately predict the dynamic characteristics of joint.

References

1.
Burdekin
,
M.
,
Back
,
N.
, and
Cowley
,
A.
,
1979
, “
Analysis of the Local Deformation in Machine Joints
,”
J. Mech. Eng. Sci.
,
21
(
1
), pp.
25
32
.
2.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London
,
295
(
1442
), pp.
300
319
.
3.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London
,
316
(
1524
), pp.
97
121
.
4.
Onions
,
R. A.
, and
Archard
,
J. F.
,
2002
, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D
,
6
(
3
), pp.
289
304
.
5.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptic Model of Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
.
6.
Carbone
,
G.
,
2009
, “
A Slightly Corrected Greenwood and Williamson Model Predicts Asymptotic Linearity Between Contact Area and Load
,”
J. Mech. Phys. Solids
,
57
(
7
), pp.
1093
1102
.
7.
Tomota
,
T.
,
Kondoh
,
Y.
, and
Ohmori
,
T.
,
2019
, “
Modeling Solid Contact Between Smooth and Rough Surfaces With Non-Gaussian Distributions
,”
Tribol. Trans.
,
62
(
4
), pp.
580
591
.
8.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic–Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
9.
Zhao
,
Y.
,
Maietta
,
D. M.
, and
Chang
,
L.
,
2000
, “
An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow
,”
ASME J. Tribol.
,
122
(
1
), pp.
86
93
.
10.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic–Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
J. Appl. Mech. Rev.
,
67
(
5
), pp.
657
662
.
11.
Zhao
,
G.
,
Li
,
S. X.
,
Xiong
,
Z. L.
,
Gao
,
W. D.
, and
Han
,
Q. K.
,
2019
, “
A Statistical Model of Elastic–Plastic Contact Between Rough Surfaces
,”
Trans. Can. Soc. Mech. Eng.
,
43
(
1
), pp.
38
46
.
12.
Gorbatikh
,
L.
, and
Popova
,
M.
,
2006
, “
Modeling of a Locking Mechanism Between Two Rough Surfaces Under Cyclic Loading
,”
Int. J. Mech. Sci.
,
48
(
9
), pp.
1014
1020
.
13.
Misra
,
A.
,
1997
, “
Mechanistic Model for Contact Between Rough Surfaces
,”
J. Eng. Mech.
,
123
(
5
), pp.
475
484
.
14.
Misra
,
A.
,
1999
, “
Micromechanical Model for Anisotropic Rock Joints
,”
J. Geophys. Res.
,
104
(
10
), pp.
23175
23187
.
15.
Misra
,
A.
,
2002
, “
Effect of Asperity Damage on Shear Behavior of Single Fracture
,”
Eng. Fract. Mech.
,
69
(
17
), pp.
1997
2014
.
16.
Misra
,
A.
, and
Marangos
,
O.
,
2011
, “
Rock-Joint Micromechanics: Relationship of Roughness to Closure and Wave Propagation
,”
Int. J. Geomech.
,
11
(
6
), pp.
431
439
.
17.
Misra
,
A.
, and
Huang
,
S. P.
,
2011
, “
Effect of Loading Induced Anisotropy on the Shear Behavior of Rough Interfaces
,”
Tribol. Int.
,
44
(
5
), pp.
627
634
.
18.
Misra
,
A.
, and
Huang
,
S. P.
,
2012
, “
Micromechanical Stress–Displacement Model for Rough Interfaces: Effect of Asperity Contact Orientation on Closure and Shear Behavior
,”
Int. J. Solids Struct.
,
49
(
1
), pp.
111
120
.
19.
Sepehri
,
A.
, and
Farhang
,
K.
,
2008
, “
On Elastic Interaction of Nominally Flat Rough Surfaces
,”
ASME J. Tribol.
,
130
(
1
), pp.
125
128
.
20.
Zhu
,
L. B.
,
Zhuang
,
Y.
,
Hong
,
J.
, and
Yang
,
G. Q.
,
2013
, “
Elastic-Plastic Model for Contact of Two Asperities Considering Shoulder-Shoulder Contact
,”
J. Xi'an Jiaotong Univ.
,
47
(
11
), pp.
48
52
.
21.
Gao
,
Z. Q.
,
Fu
,
W. P.
,
Wang
,
W.
,
Kang
,
W. C.
, and
Liu
,
Y. P.
,
2018
, “
The Study of Anisotropic Rough Surfaces Contact Considering Lateral Contact and Interaction Between Asperities
,”
Tribol. Int.
,
126
, pp.
270
282
.
22.
Gao
,
Z. Q.
,
2018
, “
Research on Theoretical Model of Contact Stiffness and Damping of Mechanical Joint
,”
Ph.D. Dissertation
,
Xi'an University of Technology
,
Xi'an, Shaanxi
.
23.
Greenwood
,
J. A.
,
1984
, “
A Unified Theory of Surface Roughness
,”
Proc. R. Soc.
,
393
(
1804
), pp.
133
157
.
24.
Tian
,
Y.
,
2012
, “
Normality Test Based on Skewness and Kurtosis
,”
Master thesis
,
Shanghai Jiaotong University
,
Shanghai
.
25.
Qiu
,
H. Z.
,
2009
,
Quantitative Research and Statistical Analysis
,
Chongqing University Press
,
Chongqing
.
26.
Wang
,
Y. Y.
,
2007
,
Theoretical Mechanics
,
Science Press
,
Beijing
.
27.
Wang
,
S. J.
,
Li
,
Z. T.
,
Han
,
Z. R.
,
Zhao
,
J. J.
, and
Li
,
P. Y.
,
2019
, “
Tangential Stiffness Model of Joint Surface Based on Continuous Deformation Theory of Asperity
,”
J. Xi'an Univ. Technol.
,
35
(
4
), pp.
401
410
.
28.
Li
,
Z. T.
,
Wang
,
S. J.
,
Han
,
Z. R.
,
Wei
,
J. J.
,
Zhao
,
J. J.
, and
Li
,
P. Y.
,
2020
, “
Modeling of Tangential Stiffness of Mechanical Joint Surface Based on Improved Fractal Theory and Continuous Deformation Theory
,”
J. Xi'an Jiaotong Univ.
,
54
(
6
), pp.
107
114
.
29.
Zhuang
,
Y.
,
Li
,
B. T.
,
Hong
,
J.
,
Yang
,
G. Q.
,
Zhu
,
L. B.
, and
Liu
,
H. J.
,
2013
, “
A Normal Contact Stiffness Model of the Interface
,”
J. Shanghai Jiaotong Univ.
,
47
(
2
), pp.
180
186
.
30.
Guo
,
Y. X.
,
Bian
,
D.
, and
Zhao
,
Y. W.
,
2017
, “
An Elastic–Plastic Model Considering Frictional Tangential Stress for the Contact of Rough Surface
,”
Lubr. Eng.
,
42
(
8
), pp.
14
19
.
31.
Wen
,
S. H.
,
2012
,
Theoretical Modeling and Simulation of the Contact Characteristics of the Bonding Surface
,
National Defense Industry Press
,
Beijing
.
32.
Zhao
,
J. J.
,
Wang
,
S. J.
,
Yang
,
C.
,
Wang
,
S. Y.
, and
Yang
,
H. X.
,
2016
, “
A Constitutive Law Based on Transverse Isotropic Hypothesis and Finite Element Model of Fixed Joint
,”
Chin. J. Mech. Eng.
,
27
(
8
), pp.
1007
1011
.
33.
Tian
,
H. L.
,
Liu
,
F. R.
, and
Fang
,
Z. F.
,
2013
, “
Immovable Joint Surface's Model Using Isotropic Virtual Material
,”
J. Vib. Eng.
,
26
(
4
), pp.
561
573
.
34.
Wang
,
S. J.
, and
Zhao
,
J. J.
,
2019
,
Finite Element Method in Mechanical Engineering
,
Science Press
,
Beijing
.
You do not currently have access to this content.