Abstract

Axial static stiffness is a main technical indicator for the ball screw feed drive system, and the elastic deformation outside the Hertz contact zone of the system affects its axial static stiffness. However, the influence of elastic deformation outside the Hertz contact zone on the axial stiffness has not been studied thoroughly. This study was to establish a flexible model of axial stiffness for the feeding system with considering the elastic deformation outside the Hertz contact zone. The axial stiffness of the feeding system was calculated using the proposed flexible model, and the model was verified by measuring the axial stiffness of the feeding system. The results show that the proposed flexible model can be more accurate compared with the conventional rigid model, and the method to analyze the elastic deformation outside the Hertz contact zone is practicable.

References

1.
Zhang
,
W.
,
Zhang
,
X.
,
Zhang
,
J.
, and
Zhao
,
W.
,
2019
, “
Analysis of Lead Screw Pre-Stretching Influences on the Natural Frequency of Ball Screw Feed System
,”
Precis. Eng.
,
57
(
2
), pp.
30
44
.
2.
Zhang
,
M.
,
Cheng
,
Y.
,
He
,
B.
, and
Weng
,
G.
,
2013
, “
Design of Identification Test Bed of the Dynamic Parameters of the Ball-Screw
,”
Mach. Des. Manuf.
, (
6
), pp.
8
10
.
3.
Zhu
,
J.
,
Zhang
,
T.
,
Wang
,
J.
, and
Li
,
X.
,
2016
, “
Axial Dynamic Characteristic Parameters Identification of Rolling Joints in a Ball Screw Feed Drive System
,”
Proc. Inst. Mech. Eng. Part C, J. Mech. Eng. Sci.
,
230
(
14
), pp.
2449
2462
.
4.
Zhou
,
H.
,
Long
,
X.
,
Meng
,
G.
, and
Dong
,
X.
,
2021
, “
Axial Stiffness Identification of a Ball Screw Feed System Using Generalized Frequency Response Functions
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
235
(
20
), pp.
4940
4953
.
5.
Brecher
,
C.
,
Eßer
,
B.
,
Falker
,
J.
,
Kneer
,
F.
, and
Fey
,
M.
,
2018
, “
Modelling of Ball Screw Drives Rolling Element Contact Characteristics
,”
CIRP Ann. Manuf. Technol.
,
67
(
1
), pp.
409
412
.
6.
Xu
,
F.
,
Wang
,
Y.
, and
Feng
,
H.
,
2013
, “
Study of Horizontal Testing Program for Axial Static Stiffness of Ball Screw
,”
Modular Mach. Tool Autom. Manuf. Tech.
, (
10
), pp.
7
9
.
7.
Chen
,
Y.
,
Tang
,
W.
, and
Wang
,
J.
,
2013
, “
Influencing Factors on Stiffness of a Ball Screw
,”
J. Vib. Shock
,
32
(
11
), pp.
70
74
.
8.
Li
,
T.
,
Li
,
F.
,
Jiang
,
Y.
,
Wang
,
H.
, and
Du
,
Y.
,
2018
, “
Modeling of Axial Contact Stiffness of a Double-Nut With Preloads
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
4
), pp.
629
638
.
9.
Chen
,
Y.
, and
Tang
,
W.
,
2014
, “
Dynamic Contact Stiffness Analysis of a Double-Nut Ball Screw Based on a Quasi-Static Method
,”
Mech. Mach. Theory
,
73
(
3
), pp.
76
90
.
10.
Liu
,
J.
, and
Ou
,
Y.
,
2019
, “
Dynamic Axial Contact Stiffness Analysis of Position Preloaded Ball Screw Mechanism
,”
Adv. Mech. Eng.
,
11
(
1
), pp.
1
16
.
11.
Liu
,
J.
,
Feng
,
H.
, and
Zhou
,
C.
,
2022
, “
Static Load Distribution and Axial Static Contact Stiffness of a Preloaded Double-Nut Ball Screw Considering Geometric Errors
,”
Mech. Mach. Theory
,
167
(
1
), p.
104460
.
12.
Zhu
,
J.
,
Zhang
,
T.
, and
Li
,
X.
,
2015
, “
Dynamic Characteristic Analysis of Ball Screw Feed System Based on Stiffness Characteristic of Mechanical Joints
,”
J. Mech. Eng.
,
51
(
17
), pp.
72
82
.
13.
He
,
G.
,
Shi
,
P.
,
Zhang
,
D.
, and
Sun
,
G.
,
2020
, “
Stiffness Matching Method for the Ball Screw Feed Drive System of Machine Tools
,”
J. Mech. Sci. Technol.
,
34
(
7
), pp.
2985
2995
.
14.
Xu
,
M.
,
Cai
,
B.
,
Li
,
C.
,
Zhang
,
H.
,
Liu
,
Z.
,
He
,
D.
, and
Zhang
,
Y.
,
2020
, “
Dynamic Characteristics and Reliability Analysis of Ball Screw Feed System on a Lathe
,”
Mech. Mach. Theory
,
150
(
8
), pp.
1
21
.
15.
Gu
,
J.
, and
Zhang
,
Y.
,
2019
, “
Dynamic Analysis of a Ball Screw Feed System With Time-Varying and Piecewise-Nonlinear Stiffness
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
233
(
18
), pp.
6503
6518
.
16.
Zou
,
C.
,
Zhang
,
H.
,
Lu
,
D.
, and
Zhao
,
W.
,
2017
, “
Effect of the Screw-Nut Joint Stiffness on the Position-Dependent Dynamics of a Vertical Ball Screw Feed System Without Counterweight
,”
Arch. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
210
, pp.
1
11
.
17.
Jiang
,
S.
, and
Zhu
,
S.
,
2010
, “
Dynamic Characteristic Parameters of Linear Guideway Joint With Ball Screw
,”
J. Mech. Eng.
,
46
(
1
), pp.
92
99
.
18.
Bertolaso
,
R.
,
Cheikh
,
M.
, and
Barranger
,
Y.
,
2014
, “
Experimental and Numerical Study of the Load Distribution in a Ball-Screw System
,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1411
1420
.
19.
Zaeh
,
M.
,
Oertli
,
T.
, and
Milberg
,
J.
,
2004
, “
Finite Element Modelling of Ball Screw Feed Drive Systems
,”
CIRP Ann. -Manuf. Technol.
,
53
(
1
), pp.
289
292
.
20.
Zhao
,
G.
,
Fan
,
Y.
,
Luo
,
X.
, and
Li
,
L.
,
2014
, “
Elastic-Plastic Contact Deformation of Precise Ball Screw Pair in Overload Condition
,”
J. Nanjing Univ. Sci. Technol.
,
38
(
2
), pp.
192
198
.
21.
Luo
,
H.
,
Fu
,
J.
,
Jiao
,
L.
, and
Zhao
,
F.
,
2019
, “
Theoretical Calculation and Simulation Analysis of Axial Static Stiffness of Double-Nut Ball Screw With Heavy Load and High Precision
,”
Math. Probl. Eng.
,
2019
(
2
), pp.
1
11
.
22.
Okwudire
,
C. E.
,
2011
, “
Improved Screw-Nut Interface Model for High-Performance Ball Screw Drives
,”
ASME J. Mech. Des.
,
133
(
4
), p. 041009.
23.
Bhattacharyya
,
A.
,
Londhe
,
N.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2017
, “
A New Approach Towards Life Prediction of Case Hardened Bearing Steels Subjected to Rolling Contact Fatigue
,”
Mater. Perform. Charact.
,
4
(
6
), pp.
656
677
.
24.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2018
, “
Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life
,”
ASME J. Tribol.
,
140
(
2
), p. 021401.
25.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2019
, “
Effect of Plasticity on the Dynamic Capacity of Modern Bearing Steels
,”
Tribol. Int.
,
133
(
5
), pp.
160
171
.
26.
Cheenady
,
A. A.
,
Arakere
,
N. K.
, and
Londhe
,
N. D.
,
2020
, “
Accounting for Microstructure Sensitivity and Plasticity in Life Prediction of Heavily Loaded Contacts Under Rolling Contact Fatigue
,”
Fatigue Fract. Eng. M.
,
3
(
43
), pp.
539
549
.
27.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Advanced Concepts of Bearing Technology
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
28.
Lacroix
,
S.
,
Nélias
,
D.
, and
Leblanc
,
A.
,
2013
, “
Four-Point Contact Ball Bearing Model With Deformable Rings
,”
ASME J. Tribol.
,
135
(
3
), pp.
928
931
.
29.
Olave
,
M.
,
Sagartzazu
,
X.
,
Damian
,
J.
, and
Serna
,
A.
,
2010
, “
Design of Four Contact-Point Slewing Bearing With a New Load Distribution Procedure to Account for Structural Stiffness
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021006
.
30.
Chen
,
G.
, and
Wen
,
J.
,
2012
, “
Load Performance of Large-Scale Rolling Bearings With Support Structure in Wind Turbines
,”
ASME J. Tribol.
,
134
(
4
), p.
041105
.
31.
Yao
,
T.
,
Chi
,
Y.
, and
Huang
,
Y.
,
2012
, “
Research on Flexibility of Bearing Rings for Multibody Contact Dynamics of Rolling Bearings
,”
Procedia Eng.
,
31
(
1
), pp.
586
594
.
32.
Yao
,
Z.
, and
Wang
,
C.
,
1991
, “
Analysis and Calculation of Rolling Bearing Load Distribution in Thin-Walled Bearing Housing
,”
Mech. Des. Manuf.
, (
1
), pp.
31
34
.
33.
Zhao
,
J.
,
Lin
,
M.
, and
Song
,
X.
,
2020
, “
Modeling and Analysis of Full Ball Load Distribution of Ball Screw With the Combined Load
,”
J. Mech. Eng.
,
56
(
17
), pp.
126
136
.
34.
Luo
,
J.
, and
Luo
,
T.
,
2009
,
Rolling Bearing Analysis and Application
,
Machinery Industry Press
,
Beijing, China
. (in Chinese).
35.
Cheng
,
G.
,
Shi
,
Z.
, and
Zhang
,
C.
,
1987
,
Design Basis of Ball Screw Transmission
,
Machinery Industry Press
,
Beijing, China
. (in Chinese).
36.
Zou
,
C.
,
Zhang
,
H.
,
Lu
,
D.
,
Zhang
,
J.
, and
Zhao
,
W.
,
2017
, “
Effect of the Screw-Nut Joint Stiffness on the Position-Dependent Dynamics of a Vertical Ball Screw Feed System Without Counterweight
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
15
), pp.
2599
2609
.
37.
Yin
,
M.
,
2008
, “
Influence of Torsion Deformation of the Screw on Electromechanical Rigidity
,”
Mach. Tool Hydraul.
,
36
(
4
), pp.
329
330
.
38.
Huang
,
J.
,
Rong
,
Q.
, and
Ou
,
Y.
,
2017
, “
Investigation of the Correlation Between the Axial Static Stiffness and the Torsional Deformation of the Double-Nut Preloaded Ball Screw Mechanism
,”
Modular Mach. Tool Autom. Manuf. Tech.
,
2017
(
4
), pp.
34
42
.
39.
THK Co., Ltd.
,
2017
, “
Ball Screw THK General Catalog
,” p.
48
, https://tech.thk.com
You do not currently have access to this content.