Abstract

This paper presents a partitioned fluid–structure interaction (FSI) solver to model elastohydrodynamic lubrication (EHL) of line contacts. The FSI model was constructed using the multiphysics simulation software ansys, wherein an iterative implicit coupling scheme is implemented to facilitate the interaction between fluid and solid components. The model uses a finite volume method (FVM) based computational fluid dynamics (CFD) solver to determine the lubricant flow behavior using the Navier–Stokes equations. Additionally, the finite element method (FEM) is utilized to model the structural response of the solid. Fluid cavitation, compressibility, non-Newtonian lubricant rheology, load balance algorithm, and dynamic meshing were incorporated in the FSI model. The pressure and film thickness results obtained from the model are presented for a wide range of loads, speeds, slide to roll ratios (SRR), surface dent, material properties (elastic plastic), etc. The model presents a detailed understanding of EHL contacts by removing any assumptions relative to the Reynolds equation. It provides the (i) two-dimensional variation of pressure, viscosity, etc., in the fluid and (ii) stress, elastic/plastic strain in the solid, simultaneously. The FSI model is robust, easy to implement, and computationally efficient. It provides an effective approach to solve sophisticated EHL problems. The FSI model was used to investigate the effects of surface dents, plasticity and material inclusions under heavily loaded lubricated line contacts as can be found in gears and rolling element bearings. The results from the model exhibit excellent corroboration with published results based on the Reynolds equation solvers.

References

1.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
CRC Press
,
New York
.
2.
Habchi
,
W.
,
Eyheramendy
,
D.
,
Vergne
,
P.
, and
Morales-Espejel
,
G.
,
2008
, “
A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem
,”
ASME J. Tribol.
,
130
(
2
), pp.
1
10
. 10.1115/1.2842246
3.
Sadeghi
,
F.
,
2010
, “Elastohydrodynamic Lubrication,”
Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends
,
Elsevier
,
New York
, pp.
171
226
.
4.
Ertel
,
A. M.
,
1939
, “
Hydrodynamic Lubrication Based on New Principles
,”
Akad. Nauk SSSR Prikadnaya Math. i Mekhanika
,
3
(
2
), pp.
41
52
.
5.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
. 10.1002/ls.23
6.
Grubin
,
A. N.
, and
Vinogradora
,
I. E.
,
1949
, “
Fundamentals of the Hydrodynamic Theory of Lubrication of Heavily Loaded Cylindrical Surfaces
,”
D. S. I. R. Transl. No. 377
.
7.
Petrusevich
,
A. I.
,
1951
, “
Fundamental Conclusions From the Contact-Hydrodynamic Theory of Lubrication
,”
Izv. Akad. Nauk. SSSR
,
3
(
2
), pp.
209
223
.
8.
Electrical
,
A.
,
1961
, “
The Lubrication of Rollers II. Film Thickness With Relation to Viscosity and Speed
,”
Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
254
(
1040
), pp.
223
236
. 10.1098/rsta.1961.0015
9.
Gohar
,
R.
, and
Cameron
,
A.
,
1963
, “
Optical Measurement of Oil Film Thickness Under Elasto-Hydrodynamic Lubrication
,”
Nature
,
200
(
4905
), pp.
458
459
. 10.1038/200458b0
10.
Crook
,
A. W.
,
1958
, “
The Lubrication of Rollers
,”
Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
250
(
981
), pp.
387
409
.
11.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation
,”
J. Lubr. Technol.
,
98
(
2
), pp.
223
228
. 10.1115/1.3452801
12.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II—Ellipticity Parameter Results
,”
J. Lubr. Technol.
,
98
(
3
), pp.
375
381
. 10.1115/1.3452861
13.
Sadeghi
,
F.
, and
Sui
,
P. C.
,
1990
, “
Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Contacts
,”
ASME J. Tribol.
,
112
(
2
), pp.
189
195
. 10.1115/1.2920241
14.
Cheng
,
H. S.
, and
Sternlicht
,
B.
,
1965
, “
A Numerical Solution for the Pressure, Temperature, and Film Thickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, Under Heavy Loads
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
695
704
. 10.1115/1.3650647
15.
Cheng
,
H. S.
,
1965
, “
A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders
,”
ASLE Trans.
,
8
(
4
), pp.
397
410
. 10.1080/05698196508972110
16.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and Its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
. 10.1115/1.3656919
17.
Kauzmann
,
W.
, and
Eyring
,
H.
,
1940
, “
The Viscous Flow of Large Molecules
,”
J. Am. Chem. Soc.
,
62
(
11
), pp.
3113
3125
. 10.1021/ja01868a059
18.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
,
1987
, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
(
4
), pp.
648
654
. 10.1115/1.3261526
19.
Dowson
,
D.
,
Taylor
,
C. M.
, and
Zhu
,
G.
,
1992
, “
A Transient Elastohydrodynamic Lubrication Analysis of a Cam and Follower
,”
J. Phys. D. Appl. Phys.
,
25
(
1A
), pp.
A313
A320
. 10.1088/0022-3727/25/1A/047
20.
Sui
,
P. C.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
113
(
2
), pp.
390
397
. 10.1115/1.2920634
21.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2001
, “
Elastohydrodynamic Film Collapse During Rapid Deceleration: Part II-Theoretical Analysis and Comparison of Theory and Experiment
,”
ASME J. Tribol.
,
123
(
2
), pp.
262
267
. 10.1115/1.1308012
22.
Osborn
,
K. F.
, and
Sadeghi
,
F.
,
1992
, “
Time Dependent Line EHD Lubrication Using the Multigrid/Multilevel Technique
,”
ASME J. Tribol.
,
114
(
1
), pp.
68
74
. 10.1115/1.2920870
23.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start up: Part I-Mixed Contact Model with Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
67
74
. 10.1115/1.1332394
24.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start up: Part II—Surface Temperature Rise Model and Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
75
82
. 10.1115/1.1332395
25.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
A Transient EHL Analysis for Line Contacts With Measured Surface Roughness Using Multigrid Technique
,”
ASME J. Tribol.
,
116
(
3
), pp.
549
556
. 10.1115/1.2928879
26.
Morales-Espejel
,
G. E.
,
2014
, “
Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review with Contributions
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
228
(
11
), pp.
1217
1242
. 10.1177/1350650113513572
27.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
1
, pp.
473
482
. 10.1115/1.2831560
28.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
,
121
(
3
), pp.
481
491
. 10.1115/1.2834093
29.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1994
, “
Numerical Simulation of a Transverse Ridge in a Circular EHL Contact Under Rolling/Sliding
,”
ASME J. Tribol.
,
116
(
4
), pp.
751
761
. 10.1115/1.2927329
30.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
The Influence of Moving Dent on Point EHL Contacts
,”
Tribol. Trans.
,
37
(
2
), pp.
323
335
. 10.1080/10402009408983301
31.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multi-Level Methods in Lubrication
,
Elsevier
,
New York
.
32.
Hughes
,
T. G.
,
Elcoate
,
C. D.
, and
Evans
,
H. P.
,
2000
, “
Coupled Solution of the Elastohydrodynamic Line Contact Problem Using a Differential Deflection Method
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
214
(
4
), pp.
585
598
. 10.1243/0954406001523920
33.
Johnson
,
K. L.
,
1977
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
356
(
1685
), pp.
215
236
. 10.1098/rspa.1977.0129
34.
Schäfer
,
C. T.
,
Giese
,
P.
,
Rowe
,
W. B.
, and
Woolley
,
N. H.
,
2000
, “Elastohydrodynamically Lubricated Line Contact Based on the Navier-Stokes Equations,”
Thinning Films and Tribological Interfaces
,
Elsevier
,
New York
, pp.
57
69
.
35.
Bair
,
S.
,
2000
,
High Pressure Rheology for Quantitative Elastohydrodynamics
,
Elsevier
,
New York
.
36.
Peiran
,
Y.
, and
Shizhu
,
W.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
. 10.1115/1.2920308
37.
Almqvist
,
T.
, and
Larsson
,
R.
,
2002
, “
The Navier–Stokes Approach for Thermal EHL Line Contact Solutions
,”
Tribol. Int.
,
35
(
3
), pp.
163
170
. 10.1016/S0301-679X(01)00112-8
38.
Almqvist
,
T.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2004
, “
A Comparison Between Computational Fluid Dynamic and Reynolds Approaches for Simulating Transient EHL Line Contacts
,”
Tribol. Int.
,
37
(
1
), pp.
61
69
. 10.1016/S0301-679X(03)00131-2
39.
Yiping
,
H.
,
Darong
,
C.
,
Xianmei
,
K.
, and
Jiadao
,
W.
,
2002
, “
Model of Fluid–Structure Interaction and Its Application to Elastohydrodynamic Lubrication
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
37–38
), pp.
4231
4240
. 10.1016/S0045-7825(02)00376-6
40.
Hartinger
,
M.
,
Dumont
,
M. L.
,
Ioannides
,
S.
,
Gosman
,
D.
, and
Spikes
,
H.
,
2008
, “
CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact
,”
ASME J. Tribol.
,
130
(
4
), p.
041503
. 10.1115/1.2958077
41.
Srirattayawong
,
S.
,
2014
, “
CFD Study of Surface Roughness Effects on the Thermo-Elastohydrodynamic Lubrication Line Contact Problem
,”
Doctoral dissertation
,
University of Leicester
.
42.
Tošić
,
M.
,
Larsson
,
R.
,
Jovanović
,
J.
,
Lohner
,
T.
,
Björling
,
M.
, and
Stahl
,
K.
,
2019
, “
A Computational Fluid Dynamics Study on Shearing Mechanisms in Thermal Elastohydrodynamic Line Contacts
,”
Lubricants
,
7
(
8
), Article 69. 10.3390/lubricants7080069
43.
Bruyere
,
V.
,
Fillot
,
N.
,
Morales-Espejel
,
G. E.
, and
Vergne
,
P.
,
2012
, “
Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydro Dynamic Contacts
,”
Tribol. Int.
,
46
(
1
), pp.
3
13
. 10.1016/j.triboint.2011.04.013
44.
Paulson
,
N. R.
,
Sadeghi
,
F.
, and
Habchi
,
W.
,
2017
, “
A Coupled Finite Element EHL and Continuum Damage Mechanics Model for Rolling Contact Fatigue
,”
Tribol. Int.
,
107
, pp.
173
183
. 10.1016/j.triboint.2016.11.024
45.
Habchi
,
W.
,
2018
,
Finite Element Modelling of Elastohydrodynamic Lubrication Problems
,
John Wiley & Sons Ltd.
,
Chichester, UK
.
46.
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
,
Harion
,
J. L.
,
Lemenand
,
T.
,
Ghanem
,
A.
,
Valle
,
D.
,
Della
, and
Peerhossaini
,
H.
,
2013
, “
Partitioned Solver for Strongly Coupled Fluid-Structure Interaction
,”
Comput. Fluids
,
71
, pp.
306
319
. 10.1016/j.compfluid.2012.11.004
47.
Degroote
,
J.
,
Haelterman
,
R.
,
Annerel
,
S.
,
Bruggeman
,
P.
, and
Vierendeels
,
J.
,
2010
, “
Performance of Partitioned Procedures in Fluid-Structure Interaction
,”
Comput. Struct.
,
88
(
7–8
), pp.
446
457
. 10.1016/j.compstruc.2009.12.006
48.
Heil
,
M.
,
Hazel
,
A. L.
, and
Boyle
,
J.
,
2008
, “
Solvers for Large-Displacement Fluid-Structure Interaction Problems: Segregated Versus Monolithic Approaches
,”
Comput. Mech.
,
43
(
1
), pp.
91
101
. 10.1007/s00466-008-0270-6
49.
Xu
,
G.
,
Nickel
,
D. A.
,
Sadeghi
,
F.
, and
Ai
,
X.
,
1996
, “
Elastoplastohydrodynamic Lubrication With Dent Effects
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
210
(
4
), pp.
233
245
. 10.1243/PIME_PROC_1996_210_505_02
50.
Slack
,
T. S.
,
Raje
,
N.
,
Sadeghi
,
F.
,
Doll
,
G.
, and
Hoeprich
,
M. R.
,
2007
, “
EHL Modeling for Nonhomogeneous Materials: The Effect of Material Inclusions
,”
ASME J. Tribol.
,
129
(
2
), pp.
256
273
. 10.1115/1.2540234
51.
Wang
,
Z.
,
Zhu
,
D.
, and
Wang
,
Q.
,
2014
, “
Elastohydrodynamic Lubrication of Inhomogeneous Materials Using the Equivalent Inclusion Method
,”
ASME J. Tribol.
,
136
(
2
), p.
021501
. 10.1115/1.4025939
52.
Liu
,
Y.
,
Chen
,
W. W.
,
Zhu
,
D.
,
Liu
,
S.
, and
Wang
,
Q. J.
,
2007
, “
An Elastohydrodynamic Lubrication Model for Coated Surfaces in Point Contacts
,”
ASME J. Tribol.
,
129
(
3
), pp.
509
516
. 10.1115/1.2736433
53.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W. W.
, and
Wang
,
Q. J.
,
2010
, “
Plasto-Elastohydrodynamic Lubrication (PEHL) in Point Contacts
,”
ASME J. Tribol.
,
132
(
3
), pp.
1
11
. 10.1115/1.4001813
54.
Ren
,
N.
,
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Three-Dimensional Plasto-Elastohydrodynamic Lubrication (PEHL) for Surfaces With Irregularities
,”
ASME J. Tribol.
,
133
(
3
), p.
031502
. 10.1115/1.4004100
55.
Peterson
,
W.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Berhan
,
M. T.
,
2020
, “
A Strongly Coupled Finite Difference Method–Finite Element Method Model for Two-Dimensional Elastohydrodynamically Lubricated Contact
,”
ASME J. Tribol.
,
142
(
5
), p.
051601
. 10.1115/1.4045816
56.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for Two-Dimensional Elasto-Hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
. 10.1016/j.triboint.2016.12.046
57.
ANSYS Inc.
,
2013
,
ANSYS Meshing User’s Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
58.
ANSYS Inc.
,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
59.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
,
ICMF New Orleans
.
60.
Hajishafiee
,
A.
,
2013
, “
Finite-Volume CFD Modelling of Fluid-Solid Interaction in EHL Contacts
,”
Doctoral dissertation
,
Imperial College London
.
61.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elasto-Hydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
.
62.
ANSYS Inc.
,
2013
,
ANSYS Fluent UDF Manual
,
ANSYS Inc.
,
Canonsburg, PA
.
63.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Doctoral Dissertation
,
Delft University of Technology
,
Netherlands
.
64.
ANSYS Inc.
,
2013
,
ANSYS Fluent User’s Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
65.
Dalmaz
,
G.
,
1980
, “
Formation and Separation of Thin Viscous Film in Hertzian Line Contacts
,”
ASME J. Tribol.
,
102
(
4
), pp.
466
477
. 10.1115/1.3251582
66.
Van Emden
,
E.
,
Venner
,
C. H.
, and
Morales-Espejel
,
G. E.
,
2016
, “
Aspects of Flow and Cavitation Around an EHL Contact
,”
Tribol. Int.
,
95
, pp.
435
448
. 10.1016/j.triboint.2015.11.042
67.
Feldermann
,
A.
,
Neumann
,
S.
, and
Jacobs
,
G.
,
2017
, “
CFD Simulation of Elastohydrodynamic Lubrication Problems With Reduced Order Models for Fluid–Structure Interaction
,”
Tribol.—Mater. Surfaces Interfaces
,
11
(
1
), pp.
30
38
. 10.1080/17515831.2017.1279846
68.
Ville
,
F.
, and
Nelias
,
D.
,
1998
, “
Influence of the Nature and Size of Solid Particles on the Indentation Features in EHL Contacts
,”
Tribol. Ser.
,
34
, pp.
399
409
. 10.1016/S0167-8922(98)80096-5
69.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
. 10.1115/1.3209132
You do not currently have access to this content.