Abstract

Early diagnosis in rotating machinery has been a challenge when looking toward the concept of intelligent machines. A crucial and critical component in these systems is the lubricated journal bearing, subjected to wear fault by abrasive removing of material in its inner wall, mainly during run-ups and run-downs. In extreme conditions, wear faults can cause unexpected shutdowns in rotating systems. Consequently, advanced condition monitoring is an essential procedure in the wear diagnosis of journal bearings. Although an increasing number of data-driven condition monitoring approaches for rotating machines have been proposed in the past decade, they mostly rely on substantial amounts of experimental data for training, which is expensive and time-consuming to obtain. The objective of this work is to develop a framework using a deep learning algorithm to classify wear faults in hydrodynamic journal bearings using simulated vibrations signals. Numerically simulated data sets under different wear severity levels and operating conditions were used to train and test the diagnostics framework. The results show that the proposed framework can be a promising tool to diagnose wear faults in journal bearings.

References

References
1.
Bouyer
,
J.
,
Fillon
,
M.
, and
Pierre-Danos
,
I.
,
2007
, “
Influence of Wear on the Behavior of a Two-Lobe Hydrodynamic Journal Bearing Subjected to Numerous Startups and Stops
,”
ASME J. Tribol.
,
129
(
1
), pp.
205
208
. 10.1115/1.2401210
2.
Gertzos
,
K. P.
,
Nikolakopoulos
,
P. G.
,
Chasalevris
,
A. C.
, and
Papadopoulos
,
C. A.
,
2011
, “
Wear Identification in Rotor-Bearing Systems by Measurements of Dynamic Bearing Characteristics
,”
Comput. Struct.
,
89
(
1–2
), pp.
55
66
. 10.1016/j.compstruc.2010.08.006
3.
Chasalevris
,
A. C.
,
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2013
, “
Dynamic Effect of Bearing Wear on Rotor-Bearing System Response
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011008
. 10.1115/1.4007264
4.
Machado
,
T. H.
, and
Cavalca
,
K. L.
,
2016
, “
Investigation on an Experimental Approach to Evaluate a Wear Model for Hydrodynamic Cylindrical Bearings
,”
Appl. Math. Model.
,
40
(
21–22
), pp.
9546
9564
. 10.1016/j.apm.2016.06.019
5.
Techane
,
A. W.
,
Wang
,
Y. F.
, and
Weldegiorgis
,
B. H.
,
2018
, “
Rotating Machinery Prognostics and Application of Machine Learning Algorithms: Use of Deep Learning With Similarity Index Measure for Health Status Prediction
,”
Proceedings of the Annual Conference of the Prognostics and Health Management Society
,
Philadelphia, PA
,
Sept. 24–27
, pp.
1
7
.
6.
Gioia
,
N.
,
Peeters
,
C.
,
Daems
,
P. J.
,
Guillaume
,
P.
, and
Helsen
,
J.
,
2018
, “
Rotating Machines System Identification by Means of Big Data Analysis
,”
Proceedings of 9th European Workshop on Structural Health Monitoring
,
Manchester, UK
,
July 10–13
, pp.
1
11
.
7.
Moosavian
,
A.
,
Ahmadi
,
H.
,
Tabatabaeefar
,
A.
, and
Khazaee
,
M.
,
2013
, “
Comparison of Two Classifiers; K-Nearest Neighbor and Artificial Neural Network, for Fault Diagnosis on a Main Engine Journal-Bearing
,”
Shock Vib.
,
20
(
2
), pp.
263
272
. 10.1155/2013/360236
8.
Oh
,
H.
,
Jung
,
J. H.
,
Jeon
,
B. C.
, and
Youn
,
B. D.
,
2018
, “
Scalable and Unsupervised Feature Engineering Using Vibration-Imaging and Deep Learning for Rotor System Diagnosis
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3539
3549
. 10.1109/TIE.2017.2752151
9.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Nispel
,
A.
,
Alemayehu
,
F. M.
, and
Serwadda
,
A.
,
2019
, “
Machine Learning in Crack Size Estimation of a Spur Gear Pair Using Simulated Vibration Data
,”
Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM. Mechanisms and Machine Science
,
Cham, Switzerland
,
Sept. 23–27
.
10.
Gecgel
,
O.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Serwadda
,
A.
,
Alemayehu
,
F. M.
, and
Nispel
,
A.
,
2019
, “
Gearbox Fault Diagnostics Using Deep Learning with Simulated Data
,”
Proceedings of IEEE International Conference on Prognostics and Health Management
,
Burlingame, CA
,
June 17–19
, IEEE, pp.
1
8
.
11.
Salamon
,
J.
, and
Bello
,
J. P.
,
2017
, “
Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification
,”
IEEE Signal Process. Lett.
,
24
(
3
), pp.
279
283
. 10.1109/LSP.2017.2657381
12.
Alves
,
D. S.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
. 10.1016/j.mechmachtheory.2020.103835
13.
Nelson
,
H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
(
4
), pp.
793
803
. 10.1115/1.3254824
14.
Liu
,
W.
, and
Novak
,
M.
,
1995
, “
Dynamic Behaviour of Turbine-Generator-Foundation
,”
Earthquake Eng. Struct. Dyn.
,
24
(
3
), pp.
339
360
. 10.1002/eqe.4290240304
15.
Dufrane
,
K. F.
,
Kannel
,
J. W.
, and
McCloskey
,
T. H.
,
1983
, “
Wear of Steam Turbine Journal Bearings at Low Operating Speeds
,”
ASME J. Tribol.
,
105
(
3
), pp.
313
317
. 10.1115/1.3254599
16.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ.
17.
Larsson
,
R.
,
Larsson
,
P. O.
,
Eriksson
,
E.
,
Sjöberg
,
M.
, and
Höglund
,
E.
,
200
, “
Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
214
(
J1
), pp.
17
27
. 10.1243/1350650001542981
18.
Machado
,
T. H.
,
Alves
,
D. S.
, and
Cavalca
,
K. L.
,
2018
, “
Discussion About Nonlinear Boundaries for Hydrodynamic Forces in Journal Bearing
,”
Nonlinear Dyn.
,
92
(
4
), pp.
2005
2022
. 10.1007/s11071-018-4177-2
19.
Alves
,
D. S.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
, and
Bachschmid
,
N.
,
2019
, “
Characteristics of Oil Film Nonlinearity in Bearings and Its Effects in Rotor Balancing
,”
J. Sound Vib.
,
459
, pp.
1
16
. 10.1016/j.jsv.2019.114854
20.
Machado
,
T. H.
, and
Cavalca
,
K. L.
,
2016
, “
Experimental Validation of a Bearing Wear Model Using the Directional Response of the Rotor-Bearing System
,”
Ann. Braz. Acad. Sci.
,
88
(
4
), pp.
2401
2416
. 10.1590/0001-3765201620150414
You do not currently have access to this content.