Abstract

To improve the performance accuracy of a conical journal bearing system, the surface error needs to be considered in the analysis since a tiny difference in dimensional values can alter the performance; the consideration of surface error may degrade the performance behavior of bearing. However, a better way to overcome such degradation may be to make use of magnetohydrodynamics (MHDs) of fluid. Therefore, the present work is planned to investigate the impact of taper error and MHD lubricant in recessed conical hybrid journal bearing. In this article, the Reynolds equation is derived under stated assumptions along with frictional power loss expression and finally solved using the finite element analysis, Newton–Raphson method, and generalized minimum residual method. The conducted research helped in determination of optimum values of recess width, land width ratio, and restrictor design parameter, and also obtaining the results corresponding to distinct performance indices. The outcome of these results may inspire practicing designers for the development of better tribo components.

References

References
1.
Stout
,
K.
, and
Rowe
,
W.
,
1974
, “
Externally Pressurized Bearings—Design for Manufacture Part 1. Journal Bearing Selection
,”
Tribology
,
7
(
3
), pp.
98
106
.
2.
Murthy
,
T.
,
1981
, “
Analysis of Multi-scallop Self-Adjusting Conical Hydrodynamic Bearings for High Precision Spindles
,”
Tribol. Int.
,
14
(
3
), pp.
147
150
. 10.1016/0301-679X(81)90061-X
3.
Agrawal
,
G.
,
1993
, “
Analysis of Power-Shaped Multipad Hydrodynamic Conical Gas Bearings
,”
Tribol. Trans.
,
36
(
2
), pp.
240
248
. 10.1080/10402009308983155
4.
Korneev
,
A. Y.
,
2012
, “
Static Characteristics of Conical Hydrodynamic Bearings Lubricated by Turbine Oil
,”
Russian Eng. Res.
,
32
(
3
), pp.
251
255
. 10.3103/S1068798X12030148
5.
Czaban
,
A.
,
2014
, “
CFD Analysis of Non-Newtonian and Non-Isothermal Lubrication of Hydrodynamic Conical Bearing
,”
J. KONES
,
21
(
4
), pp.
49
56
.
6.
Iwamoto
,
K.
, and
Oishi
,
S.
,
2002
, “Influence of Manufacturing Error for Characteristics of Bearing,”
Tribology Series
,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
, and
A. A.
Lubrecht
, eds., Vol.
40
,
Elsevier
, pp.
495
501
.
7.
Fillon
,
M.
,
Dmochowski
,
W.
, and
Dadouche
,
A.
,
2007
, “
Numerical Study of the Sensitivity of Tilting Pad Journal Bearing Performance Characteristics to Manufacturing Tolerances: Steady-State Analysis
,”
Tribol. Trans.
,
50
(
3
), pp.
387
400
. 10.1080/10402000701429246
8.
Lee
,
S. M.
,
Lee
,
D. W.
,
Ha
,
Y. H.
,
Lee
,
S. J.
,
Hwang
,
J. H.
, and
Choi
,
Y. H.
,
2013
, “
A Study on the Influence of Waviness Error to a Hydrostatic Bearing for a Crankshaft Pin Turner
,”
Tribol. Trans.
,
56
(
6
), pp.
1077
1086
. 10.1080/10402004.2013.823532
9.
Zoupas
,
L.
,
Wodtke
,
M.
,
Papadopoulos
,
C. I.
, and
Wasilczuk
,
M.
,
2019
, “
Effect of Manufacturing Errors of the Pad Sliding Surface on the Performance of the Hydrodynamic Thrust Bearing
,”
Tribol. Int.
,
134
, pp.
211
220
. 10.1016/j.triboint.2019.01.046
10.
Rowe
,
W.
,
Koshal
,
D.
, and
Stout
,
K.
,
1977
, “
Investigation of Recessed Hydrostatic and Slot-Entry Journal Bearings for Hybrid Hydrodynamic and Hydrostatic Operation
,”
Wear
,
43
(
1
), pp.
55
69
. 10.1016/0043-1648(77)90043-6
11.
Metman
,
K.
,
Muijderman
,
E.
,
Van Heijningen
,
G.
, and
Halemane
,
D.
,
1986
, “
Load Capacity of Multi-Recess Hydrostatic Journal Bearings at High Eccentricities
,”
Tribol. Int.
,
19
(
1
), pp.
29
34
. 10.1016/0301-679X(86)90092-7
12.
Helene
,
M.
,
Arghir
,
M.
, and
Frene
,
J.
,
2003
, “
Numerical Study of the Pressure Pattern in a Two-Dimensional Hybrid Journal Bearing Recess, Laminar, and Turbulent Flow Results
,”
J. Trib.
,
125
(
2
), pp.
283
290
. 10.1115/1.1537233
13.
Bakker
,
O.
, and
Van Ostayen
,
R.
,
2010
, “
Recess Depth Optimization for Rotating, Annular, and Circular Recess Hydrostatic Thrust Bearings
,”
ASME J. Tribol.
,
132
(
1
), p.
011103
. 10.1115/1.4000545
14.
Untaroiu
,
A.
, and
Fu
,
G.
,
2017
, “
Effect of Recess Shape on the Performance of a High-Speed Hybrid Journal Bearing
,”
ASME J. Eng. Gas. Turbines. Power.
,
139
(
11
), p.
112501
. 10.1115/1.4036946
15.
Zhang
,
Y.
,
Yu
,
S.
,
Lu
,
C.
,
Zhao
,
H.
, and
Liang
,
P.
,
2020
, “
An Improved Lumped Parameter Method for Calculating Static Characteristics of Multi-Recess Hydrostatic Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribology
,
234
(
2
), pp.
301
310
. 10.1177/1350650119855242
16.
Khalil
,
M.
,
Kassab
,
S.
, and
Ismail
,
A.
,
1993
, “
Effect of Inertia Forces on the Performance of Externally Pressurized Conical Thrust Bearings Under Turbulent Flow Conditions
,”
Wear
,
166
(
2
), pp.
155
161
. 10.1016/0043-1648(93)90257-M
17.
Hong
,
G.
,
Xinmin
,
L.
, and
Shaoqi
,
C.
,
2009
, “
Theoretical and Experimental Study on Dynamic Coefficients and Stability for a Hydrostatic/hydrodynamic Conical Bearing
,”
ASME J. Tribol.
,
131
(
4
), p.
041701
. 10.1115/1.3176991
18.
Zuo
,
X.-B.
,
Wang
,
J.-M.
,
Yin
,
Z.-Q.
, and
Li
,
S.-Y.
,
2013
, “
Performance Analysis of Multirecess Angled-Surface Slot-Compensated Conical Hydrostatic Bearing
,”
ASME J. Tribol.
,
135
(
4
), p.
041701
. 10.1115/1.4024296
19.
Elco
,
R.
, and
Hughes
,
W.
,
1962
, “
Magnetohydrodynamic Pressurization of Liquid Metal Bearings
,”
Wear
,
5
(
3
), pp.
198
212
. 10.1016/0043-1648(62)90004-2
20.
Snyder
,
W. T.
,
1962
, “
The Magnetohydrodynamic Slider Bearing
,”
ASME J. Basic. Eng.
,
84
(
1
), pp.
197
202
. 10.1115/1.3657252
21.
Kuzma
,
D. C.
,
1964
, “
The Finite Magnetohydrodynamic Journal Bearing
,”
ASME J. Basic. Eng.
,
86
(
3
), pp.
445
448
. 10.1115/1.3653132
22.
Dudzinsky
,
S. J.
,
Young
,
F. J.
, and
Hughes
,
W. F.
,
1968
, “
On the Load Capacity of the MHD Journal Bearing
,”
ASME J. Lubr. Tech.
,
90
(
1
), pp.
139
144
. 10.1115/1.3601529
23.
Anwar
,
M. I.
, and
Rodkiewicz
,
C. M.
,
1972
, “
Nonuniform Magnetic Field Effects in MHD Slider Bearing
,”
ASME J. Lubr. Tech.
,
94
(
1
), pp.
101
105
. 10.1115/1.3451626
24.
Pytko
,
S.
, and
Wierzcholski
,
K.
,
1981
, “
Magnetohydrodynamic Contact Between Two Elastic Rollers
,”
Wear
,
65
(
3
), pp.
285
293
. 10.1016/0043-1648(81)90056-9
25.
Gorla
,
R. S. R.
,
Ramalingam
,
K.
, and
Adluri
,
I.
,
1995
, “
Magnetohydrodynamic Braking
,”
ASME J. Tribol.
,
117
(
4
), pp.
724
728
. 10.1115/1.2831543
26.
Lin
,
J.-R.
,
2003
, “
Magneto-Hydrodynamic Squeeze Film Characteristics for Finite Rectangular Plates
,”
Indust. Lubr. Tribol.
,
55
(
2
), pp.
84
89
. 10.1108/00368790310470912
27.
Lu
,
R.-F.
,
Chien
,
R.-D.
, and
Lin
,
J.-R.
,
2006
, “
Effects of Fluid Inertia in Magneto-Hydrodynamic Annular Squeeze Films
,”
Tribol. Int.
,
39
(
3
), pp.
221
226
. 10.1016/j.triboint.2004.05.010
28.
Chu
,
L.-M.
,
Li
,
W.-L.
,
Hsu
,
H.-C.
, and
Chang
,
Y.-P.
,
2009
, “
Magneto-Elastohydrodynamic Lubrication of Circular Contacts at Impact Loading
,”
Tribol. Int.
,
42
(
2
), pp.
333
339
. 10.1016/j.triboint.2008.07.006
29.
Lin
,
J.-R.
,
2010
, “
MHD Steady and Dynamic Characteristics of Wide Tapered-Land Slider Bearings
,”
Tribol. Int.
,
43
(
12
), pp.
2378
2383
. 10.1016/j.triboint.2010.07.010
30.
Daliri
,
M.
,
Jalali-Vahid
,
D.
, and
Rahnejat
,
H.
,
2015
, “
Magneto-Hydrodynamics of Couple Stress Lubricants in Combined Squeeze and Shear in Parallel Annular Disc Viscous Coupling Systems
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
5
), pp.
578
596
. 10.1177/1350650114556398
31.
Naduvinamani
,
N.
,
Siddangouda
,
A.
, and
Siddharam
,
P.
,
2017
, “
A Comparative Study of Static and Dynamic Characteristics of Parabolic and Plane Inclined Slider Bearings Lubricated With MHD Couple Stress Fluids
,”
Tribol. Trans.
,
60
(
1
), pp.
1
11
. 10.1080/10402004.2016.1141446
32.
Rowe
,
W. B.
,
2012
,
Hydrostatic, Aerostatic and Hybrid Bearing Design
,
Elsevier
.
33.
Kumar
,
A.
, and
Sharma
,
S. C.
,
2019
, “
Optimal Parameters of Grooved Conical Hybrid Journal Bearing With Shear Thinning and Piezo-Viscous Lubricant Behavior
,”
ASME J. Tribol.
,
141
(
7
), p.
071702
. 10.1115/1.4043507
34.
Yoshimoto
,
S.
,
Rowe
,
W.
, and
Ives
,
D.
,
1988
, “
A Theoretical Investigation of the Effect of Inlet Pocket Size on the Performance of Hole Entry Hybrid Journal Bearings Employing Capillary Restrictors
,”
Wear
,
127
(
3
), pp.
307
318
. 10.1016/0043-1648(88)90162-7
You do not currently have access to this content.