Abstract

Surface integrity refers to a set of characteristics of the surface and subsurface layers that have great influence on the functional performance of mechanical components under conditions of wear, corrosion, and fatigue and is determined by the manufacturing processes employed. Thus, surface treatments are used to generate a surface integrity suited to the desired function. Deep rolling is one of the surface treatments that involve cold working of the surface and subsurface layers. This work addresses the influence of selected deep rolling parameters (pressure, speed, feed, and number of passes) on the surface integrity (roughness, surface and subsurface microhardness, and microstructure) of AISI 1020, AISI 1065, and AISI 1080 carbon steels. Deep rolling significantly improved the surface finish; however, the excessive increase in pressure, associated with the reduction of the carbon content, and in feed, associated with the increase in the carbon content, increased the roughness. An increase in the number of passes, on the other hand, improved the surface finish in some cases. Under all conditions tested, deep rolling increased the microhardness of the subsurface layer and affected depth. Finally, the microstructure analysis showed that the increase in the carbon content promoted a reduction in grain deformation caused by deep rolling. Grain deformation was found to increase in AISI 1020 and AISI 1065 steels with increasing pressure and to reduce with the elevation of rolling speed and feed. The number of passes, on the other hand, affected only the subsurface layer of AISI 1020 steel.

References

1.
Astakhov
,
V. P.
,
Petropoulos
,
G. P.
,
Pandazaras
,
C. N.
,
Davim
,
J. P.
,
Grum
,
J.
,
Zhang
,
J.
,
Pei
,
Z. J.
,
Grzesik
,
W.
,
Kruszynski
,
B.
,
Ruszaj
,
A.
, and
Jackson
,
M. J.
,
2010
,
Surface Integrity in Machining
,
Springer-Verlag
,
London
.
2.
Courtney
,
T. H.
,
2005
,
Mechanical Behavior of Materials
,
Waveland Press, Inc.
,
Long Grove, IL
.
3.
Bannantine
,
J. A.
,
Comer
,
J. J.
, and
Handrock
,
J. L.
,
1989
,
Fundamentals of Metal Fatigue Analysis
,
Prentice Hall
,
Englewood, NJ
.
4.
Stout
,
K. J.
,
1998
, “
Engineering Surfaces—A Philosophy of Manufacture (a Proposal for Good Manufacturing Practice)
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
212
(
3
), pp.
169
174
. 10.1243/0954405981515581
5.
Abrão
,
A. M.
,
Denkena
,
B.
,
Köhler
,
J.
,
Breidenstein
,
B.
,
Mörke
,
T.
, and
Rodrigues
,
P. C. M.
,
2014
, “
The Influence of Heat Treatment and Deep Rolling on the Mechanical Properties and Integrity of AISI 1060 Steel
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
3020
3030
. 10.1016/j.jmatprotec.2014.07.013
6.
Sartkulvanich
,
P.
,
2007
,
Determination of Material Properties for Use in FEM Simulations of Machining and Roller Burnishing
,
The Ohio State University
,
Columbus, OH
.
7.
Klocke
,
F.
, and
Liermann
,
J.
,
1998
, “
Roller Burnishing of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
,
38
(
5–6
), pp.
419
423
. 10.1016/S0890-6955(97)00085-0
8.
Abrão
,
A. M.
,
Denkena
,
B.
,
Köhler
,
J.
,
Breidenstein
,
B.
, and
Mörke
,
T.
,
2014
, “
The Influence of Deep Rolling on the Surface Integrity of AISI 1060 High Carbon Steel
,”
Procedia CIRP
,
13
, pp.
31
36
. 10.1016/j.procir.2014.04.006
9.
El-Axir
,
M. H.
,
2000
, “
An Investigation Into Roller Burnishing
,”
Int. J. Mach. Tools Manuf.
,
40
(
11
), pp.
1603
1617
. 10.1016/S0890-6955(00)00019-5
10.
Łabanowski
,
J.
, and
Ossowska
,
A.
,
2006
, “
Influence of Burnishing on Stress Corrosion Cracking Susceptibility of Duplex Steel
,”
J. Achiev. Mater. Manuf. Eng.
,
19
(
1
), pp.
46
52
.
11.
Seemikeri
,
C. Y.
,
Brahmankar
,
P. K.
, and
Mahagaonkar
,
S. B.
,
2008
, “
Investigations on Surface Integrity of AISI 1045 Using LPB Tool
,”
Tribol. Int.
,
41
(
8
), pp.
724
734
. 10.1016/j.triboint.2008.01.003
12.
Gharbi
,
F.
,
Sghaier
,
S.
,
Al-Fadhalah
,
K. J.
, and
Benameur
,
T.
,
2011
, “
Effect of Ball Burnishing Process on the Surface Quality and Microstructure Properties of AISI 1010 Steel Plates
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
903
910
. 10.1007/s11665-010-9701-6
13.
Rodríguez
,
A.
,
López de Lacalle
,
L. N.
,
Celaya
,
A.
,
Lamikiz
,
A.
, and
Albizuri
,
J.
,
2012
, “
Surface Improvement of Shafts by the Deep Ball-Burnishing Technique
,”
Surf. Coat. Technol.
,
206
(
11–12
), pp.
2817
2824
. 10.1016/j.surfcoat.2011.11.045
14.
Morimoto
,
T.
,
1988
, “
Work Hardening and Tool Surface Damage in Burnishing
,”
Wear
,
127
(
2
), pp.
149
159
. 10.1016/0043-1648(88)90127-5
15.
Blasón
,
S.
,
Rodríguez
,
C.
,
Belzunce
,
J.
, and
Suárez
,
C.
,
2017
, “
Fatigue Behaviour Improvement on Notched Specimens of Two Different Steels Through Deep Rolling, a Surface Cold Treatment
,”
Theor. Appl. Fract. Mech.
,
92
, pp.
223
228
. 10.1016/j.tafmec.2017.08.003
16.
Prabhu
,
P. R.
,
Kulkarni
,
S. M.
,
Sharma
,
S. S.
, and
Jagannath
,
K.
,
2014
, “
Surface Layer Alterations in AISI 4140 Steel From Turn-Assisted Deep Cold Rolling Process
,”
Proceedings of the Second International Conference on Current Trends in Engineering and Management (ICCTEM)
,
Mysore, Karnataka, India
,
July 17–19
.
17.
Chui
,
P.
,
Sun
,
K.
,
Sun
,
C.
,
Wu
,
C.
,
Wang
,
H.
, and
Zhao
,
Y.
,
2012
, “
Effect of Surface Nanocrystallization Induced by Fast Multiple Rotation Rolling on Mechanical Properties of a Low Carbon Steel
,”
Mater. Des.
,
35
, pp.
754
759
. 10.1016/j.matdes.2011.10.042
18.
Fox
,
J. H. E.
,
1979
,
An Introduction to Steel Selection: Part 1, Carbon and Low-Alloy Steels
,
Oxford University Press
,
Over Wallop
.
19.
Chiaverini
,
V.
,
1988
,
Aços e Ferros Fundidos
,
ABM
,
São Paulo
.
20.
International Organization for Standardization
,
2009
, “
6892-1: Metallic Materials— Tensile Testing—Part 1: Method of Test at Room Temperature
,”
Geneva
.
21.
Deutsches Institut Für Normung E. V.
,
2009
, “
50125: Testing of Metallic Materials—Tensile Test Pieces
,”
Berlin
.
22.
ASTM International
,
2011
, “
E384-11: Standard Test Method for Knoop and Vickers Hardness of Materials
,”
West Conshohocken
, PA.
23.
Bauccio
,
M. L.
,
1993
,
ASM Metals Reference Book
,
ASM International
,
Materials Park, OH
.
24.
Broitman
,
E.
,
2017
, “
Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview
,”
Tribol. Lett.
,
65
(
1
), pp.
1
18
. 10.1007/s11249-016-0805-5
25.
Altenberger
,
I.
,
2005
, “
Deep Rolling—The Past, the Present and the Future
,”
Proceedings of the 9th International Conference on Shot Peening
,
Paris, Marne La Vallée, France
,
Sept. 6–9
.
26.
Schulze
,
V.
,
2006
,
Modern Mechanical Surface Treatment: States, Stability, Effects
,
Wiley-VHC Verlag GmbH & Co. KGaA
,
Weinheim
.
27.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
,
Cambridge
.
28.
Röttger
,
K.
,
2002
,
Walzen Hartgedrehter Oberflächen
,
RWHT Aachen University
,
Aachen, Germany
.
You do not currently have access to this content.