Abstract

In this article, a new hybrid material is elaborated, which combines the advantages of the mechanically more resistive alloy-based composites and the effective lubricating properties of tin-based alloys with the purpose of enhancing the tribological properties and especially to enhance resistance under extreme and transient operating conditions for the application of sliding bearings. The hybrid material consists of an aluminum composite skeleton obtained via a replication method with NaCl particles as spacers and a tin-based alloy that is infiltrated into the composite skeleton. The hybrid material is characterized in respect to its microstructure and tribological parameters, such as the wear-rate and coefficient of friction. Data from the conducted tribological tests using the pin-on-disk method under dry friction conditions are obtained and compared with the results of the same tribological tests for the Al alloy, Al alloy-based porous skeleton, Al alloy-based porous composite skeleton, and tin-based alloy. It is concluded that the new hybrid material possesses superior tribological properties in comparison with the tin-based alloy, Al alloy, Al alloy-based porous skeleton, and Al alloy-based porous composite skeleton.

References

1.
Haghshenas
,
M.
,
2016
, “
Metal–Matrix Composites
,”
Reference Module Mater. Sci. Mater. Eng.
,
6
(
2000
), pp.
57
66
. 10.1016/B978-0-12-803581-8.03950-3
2.
Cooke
,
K. O.
,
2018
, “
A Comparative Analysis of Techniques Used for Joining Intermetallic MMCs
,”
Intermetallic Matrix Composites
, pp.
221
241
. 10.1016/B978-0-85709-346-2.00009-1
3.
Kumar Sharma
,
A.
,
Bhandari
,
R.
,
Aherwar
,
A.
,
Rimašauskienė
,
R.
, and
Pinca-Bretotean
,
C.
,
2020
, “
A Study of Advancement in Application Opportunities of Aluminum Metal Matrix Composites
,”
Mater. Today: Proc.
,
26
, pp.
2419
2424
. 10.1016/j.matpr.2020.02.516
4.
Surappa
,
M. K.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1–2
), pp.
319
334
. 10.1007/BF02717141
5.
Krishna
,
S. A. M.
,
Shridhar
,
T. N.
, and
Krishnamurthy
,
L.
,
2015
, “
Research Significance, Applications and Fabrication of Hybrid Metal Matrix Composite
,”
Int. J. Innov. Sci. Eng. Technol.
,
2
, pp.
227
237
.
6.
Schmidt
,
A.
,
Siebeck
,
S.
,
Götze
,
U.
,
Wagner
,
G.
, and
Nestler
,
D.
,
2018
, “
Particle-Reinforced Aluminum Matrix Composites (AMCs)—Selected Results of an Integrated Technology, User, and Market Analysis and Forecast
,”
Metals
,
8
(
2
), p.
143
. 10.3390/met8020143
7.
Stojanović
,
B.
,
2015
, “
Application of Aluminium Hybrid Composites in Automotive Industry
,”
Teh. vjesn.
,
22
(
1
), pp.
247
251
. 10.17559/TV-20130905094303
8.
Vijaya Bhaskar
,
K.
,
Sundarrajan
,
S.
,
Subba Rao
,
B.
, and
Ravindra
,
K.
,
2018
, “
Effect of Reinforcement and Wear Parameters on Dry Sliding Wear of Aluminum Composites—A Review
,”
Mater. Today: Proc.
,
5
(
2
), pp.
5891
5900
. 10.1016/j.matpr.2017.12.188
9.
Kannan
,
C.
,
Ramanujam
,
R.
,
Venkatesan
,
K.
,
Dheeraj
,
N. V.
,
Raudhraa Sundaresh
,
M.
, and
Vimal
,
A.
,
2018
, “
An Investigation on the Tribological Characteristics of Al 7075 Based Single and Hybrid Nanocomposites
,”
Mater. Today: Proc.
,
5
(
5
), pp.
12837
12847
. 10.1016/j.matpr.2018.02.268
10.
Singh
,
H.
, and
Bhowmick
,
H.
,
2018
, “
Tribological Behaviour of Hybrid AMMC Sliding Against Steel and Cast Iron Under MWCNT-Oil Lubrication
,”
Tribol. Int.
,
127
, pp.
509
519
. 10.1016/j.triboint.2018.06.030
11.
Kandpal
,
B. C.
,
Kumar
,
J.
, and
Singh
,
H.
,
2017
, “
Fabrication and Characterisation of Al2O3/Aluminium Alloy 6061 Composites Fabricated by Stir Casting
,”
Mater. Today: Proc.
,
4
(
2
), pp.
2783
2792
. 10.1016/j.matpr.2017.02.157
12.
Parvin
,
N.
, and
Rahimian
,
M.
,
2012
, “
The Characteristics of Alumina Particle Reinforced Pure Al Matrix Composite
,”
Acta Phys. Pol. A
,
121
(
1
), pp.
108
110
. 10.12693/APhysPolA.121.108
13.
Faiz
,
A.
,
Jason Lo
,
S. H.
,
Aslam
,
M.
, and
Haziq
,
A.
,
2013
, “
Tribology Behaviour of Alumina Particles Reinforced Aluminium Matrix Composites and Brake Disc Materials
,”
Procedia Eng.
,
68
, pp.
674
680
. 10.1016/j.proeng.2013.12.238
14.
El-Aziz
,
K. A.
,
Saber
,
D.
, and
Sallam
,
H. E.-D. M.
,
2015
, “
Wear and Corrosion Behavior of Al–Si Matrix Composite Reinforced With Alumina
,”
J. Bio. Tribo. Corros
,
1
(
1
), p.
5
. 10.1007/s40735-014-0005-5
15.
Wu
,
H.
,
Bi
,
Q.
,
Zhu
,
S.
,
Yang
,
J.
, and
Liu
,
W.
,
2011
, “
Friction and Wear Properties of Babbitt Alloy 16-16-2 Under Sea Water Environment
,”
Tribol. Int.
,
44
(
10
), pp.
1161
1167
. 10.1016/j.triboint.2011.05.007
16.
Lashin
,
A. R.
,
Mossa
,
M.
,
El-Bediwi
,
A.
, and
Kamal
,
M.
,
2013
, “
Study of Some Physical Properties of the Rapidly Solidified Sn–Sb–Cu–Zn Alloys
,”
Mater. Des.
,
43
, pp.
322
326
. 10.1016/j.matdes.2012.06.014
17.
Korshunov
,
L. G.
,
Noskova
,
N. I.
,
Korznikov
,
A. V.
,
Chernenko
,
N. L.
, and
Vil’danova
,
N. F.
,
2009
, “
Effect of Severe Plastic Deformation on the Microstructure and Tribological Properties of a Babbit B83
,”
Phys. Metals Metallogr.
,
108
(
5
), pp.
519
526
. 10.1134/S0031918X0911012X
18.
Zhang
,
D.
,
Zhao
,
F.
,
Li
,
Y.
,
Li
,
P.
,
Zeng
,
Q.
, and
Dong
,
G.
,
2016
, “
Study on Tribological Properties of Multi-Layer Surface Texture on Babbitt Alloys Surface
,”
Appl. Surf. Sci.
,
390
, pp.
540
549
. 10.1016/j.apsusc.2016.08.141
19.
Chen
,
S.
,
Zi
,
A.
,
Gierlotka
,
W.
,
Yang
,
C.
,
Wang
,
C.
,
Lin
,
S.
, and
Hsu
,
C.
,
2012
, “
Phase Equilibria of Sn–Sb–Cu System
,”
Mater. Chem. Phys.
,
132
(
2–3
), pp.
703
715
. 10.1016/j.matchemphys.2011.11.088
20.
Leszczyńska-Madej
,
B.
, and
Madej
,
M.
,
2016
, “
The Tribological Properties and the Microstructure Investigations of Tin Babbit with Pb Addition After Heat Treatment
,”
Archives Metallurgy Mater.
,
61
(
4
), pp.
1861
1868
. 10.1515/amm-2016-0300
21.
Leszczyńska-Madej
,
B.
, and
Madej
,
M.
,
2011
, “
The Properties of Babbitt Bushes in Steam Turbine Sliding Bearings
,”
Archives Metallurgy Mater.
,
56
(
3
), pp.
805
812
. 10.2478/v10172-011-0089-6
22.
Madej
,
M.
, and
Leszczyńska-Madej
,
B.
,
2013
, “
Effect of the Heat Treatment on the Microstructure and Properties of Tin Babbitt
,”
51
(
2
), pp.
101
110
. 10.4149/km20132101
23.
Potekhin
,
B. A.
,
Il’yushin
,
V. V.
, and
Khristolyubov
,
A. S.
,
2009
, “
Effect of Casting Methods on the Structure and Properties of Tin Babbit
,”
Met. Sci. Heat Treat.
,
51
(
7–8
), pp.
378
382
. 10.1007/s11041-009-9181-1
24.
Ishihara
,
S.
,
Tamura
,
K.
, and
Goshima
,
T.
,
2010
, “
Effect of Amount of Antimony on Sliding Wear Resistance of White Metal
,”
Tribol. Int.
,
43
(
5–6
), pp.
935
938
. 10.1016/j.triboint.2009.12.047
25.
Tachi
,
Y.
,
Ishihara
,
S.
,
Tamura
,
K.
,
Goshima
,
T.
, and
McEvily
,
A. J.
,
2005
, “
Predicting Sliding Wear Behaviour of a Tin-Based White Metal Under Varying Pressure and Speed Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
219
(
6
), pp.
451
457
. 10.1243/135065005X34035
26.
Leszczyńska-Madej
,
B.
,
Madej
,
M.
, and
Hrabia-Wiśnios
,
J.
,
2019
, “
Effect of Chemical Composition on the Microstructure and Tribological Properties of Sn-Based Alloys
,”
J. Mater. Eng. Perform
,
28
(
7
), pp.
4065
4073
. 10.1007/s11665-019-04154-4
27.
Stanev
,
L.
,
Kolev
,
M.
,
Drenchev
,
B.
, and
Drenchev
,
L.
,
2017
, “
Open-Cell Metallic Porous Materials Obtained Through Space Holders—Part I: Production Methods. A Review
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
050801
. 10.1115/1.4034439
28.
Stanev
,
L.
,
Kolev
,
M.
,
Drenchev
,
L.
, and
Krastev
,
B.
,
2020
, “
Fabrication Technique and Characterization of Aluminum Alloy-Based Porous Composite Infiltrated with Babbitt Alloy
,”
J. Mater. Eng. Perform
,
29
(
6
), pp.
3767
3773
. 10.1007/s11665-020-04891-x
29.
Stanev
,
L.
,
Kolev
,
M.
, and
Drenchev
,
L.
,
2020
, “
Tribological Characterization of Aluminum/Babbitt Composites and Their Application to Sliding Bearing
,”
Arch. Foundry Eng.
,
20
(
3
), pp.
31
36
. 10.24425/afe.2020.133326
30.
Valeeva
,
A. K.
,
Valeev
,
I. S.
, and
Fazlyakhmetov
,
R. F.
,
2014
, “
Effect of Structure of B83 Babbit on Its Wear
,”
J. Frict. Wear
,
35
(
4
), pp.
311
315
. 10.3103/S1068366614040138
31.
Bolotova
,
L. K.
,
Kalashnikov
,
I. E.
,
Kobeleva
,
L. I.
,
Bykov
,
P. A.
,
Katin
,
I. V.
,
Kolmakov
,
A. G.
, and
Podymova
,
N. B.
,
2018
, “
Structure and Properties of the B83 Babbit Alloy Based Composite Materials Produced by Extrusion
,”
Inorg. Mater. Appl. Res.
,
9
(
3
), pp.
478
483
. 10.1134/S2075113318030103
32.
Panov
,
I.
,
Dochev
,
B.
,
Manolov
,
V.
,
Velikov
,
A.
,
Diyakova
,
V.
, and
Kuzmanov
,
P.
,
2019
, “
Investigation of the Potential of Simultaneous Modification of Hypereutectic Aluminum-Silicon AlSi18 Alloy With Conventional and Nano-Modifier
,”
IFAC-PapersOnLine
,
52
(
25
), pp.
488
493
. 10.1016/j.ifacol.2019.12.590
33.
Dochev
,
B.
,
Velikov
,
A.
,
Panov
,
I.
,
Diyakova
,
V.
,
Kuzmanov
,
P.
, and
Manolov
,
V.
,
2019
, “
Microstructure and Mechanical Properties of a Hypereutectic Alloy АlSi18, Modified by a Nanodiamond and Phosphorus, International Scientific Journal: Machines. Technologies YEAR XIII
,”
Materials
,
13
(
11
), pp.
504
506
.
34.
Panov
,
I.
,
Dochev
,
B.
,
Manolov
,
V.
,
Velikov
,
A.
,
Dyakova
,
V.
, and
Kuzmanov
,
P.
,
2020
, “
Influence of a P Modifier, a Nanosized SiC Modifier, and a Combination of Them on the Mechanical Properties of a Hypereutectic Aluminium-Silicon Alloy AlSi18
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
878
, p.
012061
. 10.1088/1757-899X/878/1/012061
You do not currently have access to this content.