Abstract

The wear of aluminum alloy may be decreased by its reinforcement with quasicrystals (QCs) prepared by melt, which in itself has good wear-resisting properties. This research paper considers the part played by a dense Al-Fe-Cr QC reinforced Al matrix composite fabricated by the directed energy deposition (DED) in reducing wear between sliding surfaces and discusses briefly some of the factors which, in practice, explain ceramic-like properties of quasicrystal including low friction and wear resistance. The hardness of reinforcement phases, QC Al91Fe4Cr5 and Al13(Fe, Cr)4, was up to ∼91 and ∼112 HV respectively, while the Al matrix was just ∼70 HV. Furthermore, the reinforcement phases contributed to form the mechanical mixing layer (MML) which significantly decreased the coefficient of friction (COF) and improves the wear resistance. With the increase of load from 1 N to 5 N, the COF dropped from 0.82 to 0.33 because the higher load was beneficial to the formation of harder and denser MML. Through the comprehensive analysis of the wear test and worn surface, the wear behavior and mechanism of this QC-reinforced Al matrix composite have been explained in detail. The results indicate that the quasicrystal-reinforced Al matrix composites formed by DED are one of the promising wear-resistance materials.

References

1.
Mondolfo
,
L. F.
,
2013
,
Aluminum Alloys: Structure and Properties
,
Elsevier
,
New York
.
2.
Ghazali
,
M. J.
,
Rainforth
,
W. M.
, and
Jones
,
H.
,
2007
, “
The Wear of Wrought Aluminium Alloys Under dry Sliding Conditions
,”
Tribol. Int.
,
40
(
2
), pp.
160
169
.
3.
Murakami
,
T.
,
Kajino
,
S.
, and
Nakano
,
S.
,
2013
, “
High-Temperature Friction and Wear Properties of Various Sliding Materials Against Aluminum Alloy 5052
,”
Tribol. Int.
,
60
, pp.
45
52
.
4.
Samal
,
P.
,
Vundavilli
,
P. R.
,
Meher
,
A.
, and
Mahapatra
,
M. M.
,
2020
, “
Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties
,”
J. Manuf. Processes
,
59
, pp.
131
152
.
5.
Jin
,
P.-P.
,
Chen
,
G.
,
Han
,
L.
, and
Wang
,
J.-H.
,
2014
, “
Dry Sliding Friction and Wear Behaviors of Mg2B2O5 Whisker Reinforced 6061Al Matrix Composites
,”
Trans. Nonferrous Met. Soc. China
,
24
(
1
), pp.
49
57
.
6.
Rouhi
,
M.
,
Moazami-Goudarzi
,
M.
, and
Ardestani
,
M.
,
2019
, “
Comparison of Effect of SiC and MoS2 on Wear Behavior of Al Matrix Composites
,”
Trans. Nonferrous Met. Soc. China
,
29
(
6
), pp.
1169
1183
.
7.
Yadav
,
S.
,
Aggrawal
,
A.
,
Kumar
,
A.
, and
Biswas
,
K.
,
2019
, “
Effect of TiB2 Addition on Wear Behavior of (AlCrFeMnV)90Bi10 High Entropy Alloy Composite
,”
Tribol. Int.
,
132
, pp.
62
74
.
8.
Wu
,
L.
,
Zhao
,
Z.
,
Bai
,
P.
,
Zhao
,
W.
,
Li
,
Y.
,
Liang
,
M.
,
Liao
,
H.
,
Huo
,
P.
, and
Li
,
J.
,
2020
, “
Wear Resistance of Graphene Nano-Platelets (GNPs) Reinforced AlSi10Mg Matrix Composite Prepared by SLM
,”
Appl. Surf. Sci.
,
503
, p.
144156
.
9.
Polat
,
S.
,
Sun
,
Y.
, and
Çevik
,
E.
,
2021
, “
Wear Behavior of TiB2/GNPs and B4C/GNPs Reinforced AA6061 Matrix Composites
,”
ASME J. Tribol.
,
143
(
11
), p.
111701
.
10.
Prasad
,
R.
,
Kumar
,
H.
,
Kumar
,
P.
,
Tewari
,
S. P.
, and
Singh
,
J. K.
,
2020
, “
Filler Dispersion and Unidirectional Sliding Characteristics of As-Cast and Multi-Pass Friction Stir Processed ZrB2/AA7075 In-Situ Composites
,”
ASME J. Tribol.
,
143
(
8
), p.
081701
.
11.
Mandal
,
D.
, and
Viswanathan
,
S.
,
2013
, “
Effect of Heat Treatment on Microstructure and Interface of SiC Particle Reinforced 2124 Al Matrix Composite
,”
Mater. Charact.
,
85
, pp.
73
81
.
12.
Gu
,
D.
,
Jue
,
J.
,
Dai
,
D.
,
Lin
,
K.
, and
Chen
,
W.
,
2017
, “
Effects of Dry Sliding Conditions on Wear Properties of Al-Matrix Composites Produced by Selective Laser Melting Additive Manufacturing
,”
ASME J. Tribol.
,
140
(
2
), p.
021605
.
13.
Koksal
,
S.
,
Ficici
,
F.
,
Kayikci
,
R.
, and
Savas
,
O.
,
2012
, “
Experimental Optimization of Dry Sliding Wear Behavior of in Situ AlB2/Al Composite Based on Taguchi’s Method
,”
Mater. Des.
,
42
, pp.
124
130
.
14.
Chen
,
F.
,
Chen
,
Z.
,
Mao
,
F.
,
Wang
,
T.
, and
Cao
,
Z.
,
2015
, “
TiB2 Reinforced Aluminum Based In Situ Composites Fabricated by Stir Casting
,”
Mater. Sci. Eng., A
,
625
, pp.
357
368
.
15.
Sobhani
,
M.
,
Mirhabibi
,
A.
,
Arabi
,
H.
, and
Brydson
,
R. M. D.
,
2013
, “
“Effects of In Situ Formation of TiB2 Particles on Age Hardening Behavior of Cu–1wt% Ti–1wt% TiB2
,”
Mater. Sci. Eng., A
,
577
, pp.
16
22
.
16.
Gu
,
D.
,
Ma
,
J.
,
Chen
,
H.
,
Lin
,
K.
, and
Xi
,
L.
,
2018
, “
Laser Additive Manufactured WC Reinforced Fe-Based Composites With Gradient Reinforcement/Matrix Interface and Enhanced Performance
,”
Compos. Struct.
,
192
, pp.
387
396
.
17.
Shishkovsky
,
I.
,
Missemer
,
F.
, and
Smurov
,
I.
,
2018
, “
Metal Matrix Composites With Ternary Intermetallic Inclusions Fabricated by Laser Direct Energy Deposition
,”
Compos. Struct.
,
183
, pp.
663
670
.
18.
Li
,
N.
,
Huang
,
S.
,
Zhang
,
G.
,
Qin
,
R.
,
Liu
,
W.
,
Xiong
,
H.
,
Shi
,
G.
, and
Blackburn
,
J.
,
2019
, “
Progress in Additive Manufacturing on New Materials: A Review
,”
J. Mater. Sci. Technol.
,
35
(
2
), pp.
242
269
.
19.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
20.
Kimura
,
H. M.
,
Sasamori
,
K.
, and
Inoue
,
A.
,
2000
, “
Al–Fe-Based Bulk Quasicrystalline Alloys With High Elevated Temperature Strength
,”
J. Mater. Res.
,
15
(
12
), pp.
2737
2744
.
21.
Wolf
,
W.
,
Bolfarini
,
C.
,
Kiminami
,
C. S.
, and
Botta
,
W. J.
,
2020
, “
Designing New Quasicrystalline Compositions in Al-Based Alloys
,”
J. Alloys Compd.
,
823
, p.
153765
.
22.
Galano
,
M.
,
Audebert
,
F.
,
Escorial
,
A. G.
,
Stone
,
I. C.
, and
Cantor
,
B.
,
2009
, “
Nanoquasicrystalline Al–Fe–Cr-Based Alloys. Part II. Mechanical Properties
,”
Acta Mater.
,
57
(
17
), pp.
5120
5130
.
23.
Gu
,
J.
,
Gu
,
S.
,
Xue
,
L.
,
Wu
,
S.
, and
Yan
,
Y.
,
2012
, “
Microstructure and Mechanical Properties of In Situ Al13Fe4/Al Composites Prepared by Mechanical Alloying and Spark Plasma Sintering
,”
Mater. Sci. Eng., A
,
558
, pp.
684
691
.
24.
Nemati
,
N.
,
Emamy
,
M.
,
Penkov
,
O. V.
,
Kim
,
J.
, and
Kim
,
D.-E.
,
2016
, “
Mechanical and High Temperature Wear Properties of Extruded Al Composite Reinforced With Al 13 Fe 4 CMA Nanoparticles
,”
Mater. Des.
,
90
, pp.
532
544
.
25.
Li
,
J. C.
,
Lin
,
X.
,
Kang
,
N.
,
Lu
,
J. L.
,
Wang
,
Q. Z.
, and
Huang
,
W. D.
,
2020
, “
Microstructure, Tensile and Wear Properties of a Novel Graded Al Matrix Composite Prepared by Direct Energy Deposition
,”
J. Alloys Compd.
,
826
, p.
154077
.
26.
Wang
,
Q. Z.
,
Lin
,
X.
,
Wen
,
X. L.
,
Kang
,
N.
, and
Huang
,
W. D.
,
2021
, “
Microstructure and Wear Behavior of Nano-TiB2p/2024Al Matrix Composites Fabricated by Laser Direct Energy Deposition With Powder Feeding
,”
ASME J. Tribol.
,
143
(
5
), p.
051101
.
27.
Kang
,
N.
,
Lin
,
X.
,
Mansori
,
M. E.
,
Wang
,
Q. Z.
,
Lu
,
J. L.
,
Coddet
,
C.
, and
Huang
,
W. D.
,
2020
, “
On the Effect of the Thermal Cycle During the Directed Energy Deposition Application to the In Situ Production of a Ti-Mo Alloy Functionally Graded Structure
,”
Addit. Manuf.
,
31
, p.
100911
.
28.
Li
,
Y.
, and
Gu
,
D.
,
2014
, “
Parametric Analysis of Thermal Behavior During Selective Laser Melting Additive Manufacturing of Aluminum Alloy Powder
,”
Mater. Des.
,
63
, pp.
856
867
.
29.
Mirkoohi
,
E.
,
Seivers
,
D. E.
,
Garmestani
,
H.
, and
Liang
,
S. Y. J. M.
,
2019
, “
Heat Source Modeling in Selective Laser Melting
,”
Materials
,
12
(
13
), p.
2052
.
30.
Xie
,
L.
,
Guo
,
H.
,
Song
,
Y.
,
Liu
,
C.
,
Wang
,
Z.
,
Hua
,
L.
,
Wang
,
L.
, and
Zhang
,
L.-C.
,
2020
, “
Effects of Electroshock Treatment on Microstructure Evolution and Texture Distribution of Near-β Titanium Alloy Manufactured by Directed Energy Deposition
,”
Mater. Charact.
,
161
, p.
110137
.
31.
Aboulkhair
,
N. T.
,
Simonelli
,
M.
,
Parry
,
L.
,
Ashcroft
,
I.
,
Tuck
,
C.
, and
Hague
,
R.
,
2019
, “
3D Printing of Aluminium Alloys: Additive Manufacturing of Aluminium Alloys Using Selective Laser Melting
,”
Prog. Mater. Sci.
,
106
, p.
100578
.
32.
Kang
,
N.
,
El Mansori
,
M.
,
Lu
,
J. L.
,
Lin
,
X.
, and
Huang
,
W. D.
,
2019
, “
Effect of Selective Post-Aging Treatment on Subsurface Damage of Quasicrystal Reinforced Al Composite Manufactured by Selective Laser Melting
,”
Wear
,
426–427
, pp.
934
941
.
33.
Kang
,
N.
,
Lin
,
X.
,
Xu
,
J.
,
Joguet
,
D.
,
Li
,
Q.
,
Liao
,
H. L.
,
Huang
,
W. D.
, and
Coddet
,
C.
,
2019
, “
Compression Behavior of Selected Laser Melted Al/Quasicrystal Composite Lattice Structure
,”
J. Laser Appl.
,
31
(
2
), p.
022311
.
34.
Lu
,
J. L.
,
Lin
,
X.
,
Liao
,
H. L.
,
Kang
,
N.
,
Huang
,
W. D.
, and
Coddet
,
C.
,
2020
, “
Compression Behaviour of Quasicrystal/Al Composite With Powder Mixture Driven Layered Microstructure Prepared by Selective Laser Melting
,”
Opt. Laser Technol.
,
129
, p.
106277
.
35.
Kang
,
N.
,
Fu
,
Y.
,
Coddet
,
P.
,
Guelorget
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2017
, “
On the Microstructure, Hardness and Wear Behavior of Al-Fe-Cr Quasicrystal Reinforced Al Matrix Composite Prepared by Selective Laser Melting
,”
Mater. Des.
,
132
, pp.
105
111
.
36.
Kang
,
N.
,
El Mansori
,
M.
,
Lin
,
X.
,
Guittonneau
,
F.
,
Liao
,
H. L.
,
Huang
,
W. D.
, and
Coddet
,
C.
,
2018
, “
In-Situ Synthesis of Aluminum/Nano-Quasicrystalline Al-Fe-Cr Composite by Using Selective Laser Melting
,”
Composites Part B
,
155
, pp.
382
390
.
37.
Galano
,
M.
,
Audebert
,
F.
,
Stone
,
I. C.
, and
Cantor
,
B.
,
2009
, “
Nanoquasicrystalline Al–Fe–Cr-Based Alloys. Part I: Phase Transformations
,”
Acta Mater.
,
57
(
17
), pp.
5107
5119
.
38.
Singh
,
H.
,
Kumar
,
S.
,
Kumar
,
D.
,
Srivastav
,
M.
,
Kumar
,
R.
,
Jain
,
J.
,
Chouhan
,
A.
, and
Khatri
,
R.
, “
Reinforcing the Near Eutectic Aluminum–Silicon Alloy With Graphene: An Approach Toward Self-Lubricating Composite
,”
Adv. Eng. Mater.
,
23
, p.
2000910
.
39.
García-Escorial
,
A.
,
Natale
,
E.
,
Cremaschi
,
V. J.
,
Todd
,
I.
, and
Lieblich
,
M.
,
2015
, “
Microstructural Transformation of Quasicrystalline AlFeCrTi Extruded Bars Upon Long Thermal Treatments
,”
J. Alloys Compd.
,
643
, pp.
S199
S203
.
40.
Feng
,
S.
,
Cui
,
Y.
,
Liotti
,
E.
,
Lui
,
A.
,
Gourlay
,
C. M.
, and
Grant
,
P. S.
,
2020
, “
In-Situ X-Ray Radiography of Twinned Crystal Growth of Primary Al13Fe4
,”
Scripta Mater.
,
184
, pp.
57
62
.
41.
Li
,
X.
, and
Tandon
,
K.
,
1999
, “
Mechanical Mixing Induced by Sliding Wear of an Al–Si Alloy Against M2 Steel
,”
Wear
,
225
, pp.
640
648
.
42.
Li
,
X.
, and
Tandon
,
K.
,
2000
, “
Microstructural Characterization of Mechanically Mixed Layer and Wear Debris in Sliding Wear of an Al Alloy and an Al Based Composite
,”
Wear
,
245
(
1–2
), pp.
148
161
.
43.
Alidokht
,
S. A.
,
Abdollah-zadeh
,
A.
, and
Assadi
,
H.
,
2013
, “
Effect of Applied Load on the Dry Sliding Wear Behaviour and the Subsurface Deformation on Hybrid Metal Matrix Composite
,”
Wear
,
305
(
1–2
), pp.
291
298
.
44.
Costa
,
H. L.
,
Oliveira Junior
,
M. M.
, and
de Mello
,
J. D. B.
,
2017
, “
Effect of Debris Size on the Reciprocating Sliding Wear of Aluminium
,”
Wear
,
376–377
, pp.
1399
1410
.
45.
Chen
,
C.
,
Lv
,
B.
,
Ma
,
H.
,
Sun
,
D.
, and
Zhang
,
F.
,
2018
, “
Wear Behavior and the Corresponding Work Hardening Characteristics of Hadfield Steel
,”
Tribol. Int.
,
121
, pp.
389
399
.
You do not currently have access to this content.