Abstract

Dragonfly has remarkable flight efficiency, with unique wing structural properties such as the surface topological vein structures, corrugation, etc. The object of this paper is to identify how the polygonal patterns of the samples with bionic wing veins affected the skin friction. Four kinds of polygonal three-dimensional (3D) patterns were designed and fabricated by additive manufacturing technology, and the skin friction coefficients (Cf) of various models were measured by the wind channel experiments. The quantitative effects of models on Cf with different Reynolds numbers (Re) in laminar, transitional, and turbulent flow conditions were obtained. Results indicated that the law of whole change of the skin friction coefficient versus Re is the same for all patterns which can be expressed by an empirical formula Cf=kReα. The model with mixed square and pentagonal patterns always generates the highest skin friction in the different flow conditions, which was speculated to play an important role on the attenuation of the flow separation of the dragonfly wing.

References

References
1.
Azuma
,
A.
,
Azuma
,
S.
,
Watanabe
,
I.
, and
Furuta
,
T.
,
1985
, “
Flight Mechanics of a Dragonfly
,”
J. Exp. Biol.
,
116
(
1
), pp.
79
107
.
2.
Kesel
,
A. B.
,
2000
, “
Aerodynamic Characteristics of Dragonfly Wing Sections Compared With Technical Aerofoils
,”
J. Exp. Biol.
,
203
(
20
), pp.
3125
3135
.
3.
Sane
,
S. P.
,
2003
, “
The Aerodynamics of Insect Flight
,”
J. Exp. Biol.
,
206
(
23
), pp.
4191
4208
. 10.1242/jeb.00663
4.
Kim
,
W. K.
,
Ko
,
J. H.
,
Park
,
H. C.
, and
Byun
,
D. Y.
,
2009
, “
Effects of Corrugation of the Dragonfly Wing on Gliding Performance
,”
J. Theor. Biol.
,
260
(
4
), pp.
523
530
. 10.1016/j.jtbi.2009.07.015
5.
Sun
,
J.
, and
Bhushan
,
B.
,
2012
, “
The Structure and Mechanical Properties of Dragonfly Wings and Their Role on Flyability
,”
C.R. Mec.
,
340
(
1–2
), pp.
3
17
. 10.1016/j.crme.2011.11.003
6.
Ennos
,
A.
,
1988
, “
The Importance of Torsion in the Design of Insect Wings
,”
J. Exp. Biol.
,
140
(
1
), pp.
137
160
.
7.
Wootton
,
R.
,
Evans
,
K.
,
Herbert
,
R.
, and
Smith
,
C.
,
2000
, “
The Hind Wing of the Desert Locust (Schistocerca gregaria Forskal). I. Functional Morphology and Mode of Operation
,”
J. Exp. Biol.
,
203
(
19
), pp.
2921
2931
.
8.
Song
,
F.
,
Xiao
,
K.
,
Bai
,
K.
, and
Bai
,
Y.
,
2007
, “
Microstructure and Nanomechanical Properties of the Wing Membrane of Dragonfly
,”
Mat. Sci. Eng. A
,
457
(
1–2
), pp.
254
260
. 10.1016/j.msea.2007.01.136
9.
Wang
,
X. S.
,
Li
,
Y.
, and
Shi
,
Y. F.
,
2008
, “
Effects of Sandwich Microstructures on Mechanical Behaviors of Dragonfly Wing Vein
,”
Compos. Sci. Technol.
,
68
(
1
), pp.
186
192
. 10.1016/j.compscitech.2007.05.023
10.
Wang
,
X. S.
,
Zhang
,
Z. H.
,
Ren
,
H. H.
,
Chen
,
Y. L.
, and
Wu
,
B. S.
,
2017
, “
Role of Soft Matter in the Sandwich Vein of Dragonfly Wing in Its Configuration and Aerodynamic Behaviors
,”
J. Bionic Eng.
,
14
(
3
), pp.
557
566
. 10.1016/S1672-6529(16)60421-3
11.
Zhao
,
H.
,
Yin
,
Y. J.
, and
Zhong
,
Z.
,
2010
, “
Micro and Nano Structures and Morphologies on the Wing Veins of Dragonflies
,”
Chin. Sci. Bull.
,
55
(
19
), pp.
1993
1995
. 10.1007/s11434-010-3253-x
12.
Zhao
,
H.
,
Yin
,
Y. J.
, and
Zhong
,
Z.
,
2012
, “
Multi-Levels, Multi-Scales and Multi-Functions in the Fine Structure of the Wing Veins in the Dragonfly Pantala flavescens (Fabricius) (Anisoptera: Libellulidae)
,”
Odonatologica
,
41
(
2
), pp.
161
172
.
13.
Chen
,
Y. L.
,
Wang
,
X. S.
,
Ren
,
H. H.
,
Yin
,
H.
, and
Jia
,
S.
,
2012
, “
Hierarchical Dragonfly Wing: Microstructure-Biomechanical Behavior Relations
,”
J. Bionic Eng.
,
9
(
2
), pp.
185
191
. 10.1016/S1672-6529(11)60114-5
14.
Chen
,
Y. L.
,
Wang
,
X. S.
,
Ren
,
H. H.
, and
Li
,
X. D.
,
2011
, “
An Organic Junction Between the Vein and Membrane of the Dragonfly Wing
,”
Chin. Sci. Bull.
,
56
(
16
), pp.
1658
1660
. 10.1007/s11434-011-4491-2
15.
Ren
,
H. H.
,
Wang
,
X. S.
,
Chen
,
Y. L.
, and
Li
,
X. D.
,
2012
, “
Biomechanical Behaviors of Dragonfly Wing: Relationship Between Configuration and Deformation
,”
Chin. Phys. B
,
21
(
3
), p.
034501
. 10.1088/1674-1056/21/3/034501
16.
Ren
,
H. H.
,
Wang
,
X. S.
,
Li
,
X. D.
, and
Chen
,
Y. L.
,
2013
, “
Effects of Dragonfly Wing Structure on the Dynamic Performances
,”
J. Bionic Eng.
,
10
(
1
), pp.
28
38
. 10.1016/S1672-6529(13)60196-1
17.
Zhang
,
Z.
,
Yin
,
Y. J.
,
Zhong
,
Z.
, and
Zhao
,
H.
,
2015
, “
Aerodynamic Performance of Dragonfly Wing With Well-Designed Corrugated Section in Gliding Flight
,”
CMES-Comp. Model. Eng. Sci.
,
109
(
3
), pp.
285
302
.
18.
Dickinson
,
M.
,
Lehmann
,
F.
, and
Sane
,
S.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
. 10.1126/science.284.5422.1954
19.
Wakeling
,
J.
, and
Ellington
,
C. P.
,
1997
, “
Dragonfly Flight. I. Gliding Flight and Steady-State Aerodynamic Forces
,”
J. Exp. Biol.
,
200
(
3
), pp.
543
556
.
20.
Okamoto
,
M.
,
Yasuda
,
K.
, and
Azuma
,
A.
,
1996
, “
Aerodynamic Characteristics of the Wings and Body of a Dragonfly
,”
J. Exp. Biol.
,
199
(
2
), pp.
281
294
.
21.
Maybury
,
W. J.
, and
Lehmann
,
F. O.
,
2004
, “
The Fluid Dynamics of Flight Control by Kinematic Phase Lag Variation Between Two Robotic Insect Wings
,”
J. Exp. Biol.
,
207
(
26
), pp.
4707
4726
. 10.1242/jeb.01319
22.
Thomas
,
A. L.
,
Taylor
,
G. K.
,
Srygley
,
R. B.
,
Nudds
,
R. L.
, and
Bomphrey
,
R. J.
,
2004
, “
Dragonfly Flight: Free-Flight and Tethered Flow Visualizations Reveal a Diverse Array of Unsteady Lift-Generating Mechanisms, Controlled Primarily via Angle of Attack
,”
J. Exp. Biol.
,
207
(
24
), pp.
4299
4323
. 10.1242/jeb.01262
23.
Li
,
C.
, and
Dong
,
H.
,
2017
, “
Wing Kinematics Measurement and Aerodynamics of a Dragonfly in Turning Flight
,”
Bioinspiration Biomimetics
,
12
(
2
), p.
026001
. 10.1088/1748-3190/aa5761
24.
Ivanova
,
O.
,
Williams
,
C.
, and
Campbell
,
T.
,
2013
, “
Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges
,”
Rapid Prototyp. J.
,
19
(
5
), pp.
353
364
. 10.1108/rpj-12-2011-0127
25.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
. 10.1016/j.cad.2015.04.001
26.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
. 10.1063/1.4935926
27.
Mandrycky
,
C.
,
Wang
,
Z.
,
Kim
,
K.
, and
Kim
,
D. H.
,
2016
, “
3D Bioprinting for Engineering Complex Tissues
,”
Biotechnol. Adv.
,
34
(
4
), pp.
422
434
. 10.1016/j.biotechadv.2015.12.011
28.
Martelli
,
N.
,
Serrano
,
C.
,
van den Brink
,
H.
,
Pineau
,
J.
,
Prognon
,
P.
,
Borget
,
I.
, and
El Batti
,
S.
,
2016
, “
Advantages and Disadvantages of 3-Dimensional Printing in Surgery: A Systematic Review
,”
Surgery
,
159
(
6
), pp.
1485
1500
. 10.1016/j.surg.2015.12.017
29.
Lee
,
J. Y.
,
An
,
J.
, and
Chua
,
C. K.
,
2017
, “
Fundamentals and Applications of 3D Printing for Novel Materials
,”
Appl. Mater. Today
,
7
, pp.
120
133
.
30.
Bandyopadhyay
,
A.
, and
Heer
,
B.
,
2018
, “
Additive Manufacturing of Multi-Material Structures
,”
Mater. Sci. Eng. R Rep.
,
129
, pp.
1
16
. 10.1016/j.mser.2018.04.001
31.
Velasco-Hogan
,
A.
,
Xu
,
J.
, and
Meyers
,
M. A.
,
2018
, “
Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures
,”
Adv. Mater.
,
30
(
52
), p.
1800940
. 10.1002/adma.201800940
32.
Yanar
,
N.
,
Kallem
,
P.
,
Son
,
M.
,
Park
,
H.
,
Kang
,
S.
, and
Choi
,
H.
,
2020
, “
A New Era of Water Treatment Technologies: 3D Printing for Membranes
,”
J. Ind. Eng. Chem.
,
91
, pp.
1
14
.
33.
Li
,
X.
,
Liu
,
B.
,
Pei
,
B.
,
Chen
,
J.
,
Zhou
,
D.
,
Peng
,
J.
,
Zhang
,
X.
,
Jia
,
W.
, and
Xu
,
T.
,
2020
, “
Inkjet Bioprinting of Biomaterials
,”
Chem. Rev.
,
120
(
19
), pp.
10793
10833
. 10.1021/acs.chemrev.0c00008
34.
Jang
,
S.
,
Park
,
S.
, and
Bae
,
C. J.
,
2020
, “
Development of Ceramic Additive Manufacturing: Process and Materials Technology
,”
Biomed. Eng. Lett.
,
10
(
4
), pp.
493
503
.
35.
Hassan
,
K.
,
Nine
,
M. J.
,
Tung
,
T. T.
,
Stanley
,
N.
,
Yap
,
P. L.
,
Rastin
,
H.
,
Yu
,
L.
, and
Losic
,
D.
,
2020
, “
Functional Inks and Extrusion-Based 3D Printing of 2D Materials: a Review of Current Research and Applications
,”
Nanoscale
,
12
(
37
), pp.
19007
19042
. 10.1039/D0NR04933F
36.
Shyy
,
W.
,
Lian
,
Y.
,
Tang
,
J.
,
Liu
,
H.
,
Trizila
,
P.
,
Stanford
,
B.
,
Bernal
,
L.
,
Cesnik
,
C.
,
Friedmann
,
P.
, and
Ifju
,
P.
,
2008
, “
Computational Aerodynamics of Low Reynolds Number Plunging, Pitching and Flexible Wings for MAV Applications
,”
Acta Mech. Sin.
,
24
(
4
), pp.
351
373
. 10.1007/s10409-008-0164-z
37.
Hu
,
H.
, and
Tamai
,
M.
,
2008
, “
Bioinspired Corrugated Airfoil at Low Reynolds Numbers
,”
J. Aircr.
,
45
(
6
), pp.
2068
2077
. 10.2514/1.37173
38.
Nakata
,
T.
, and
Liu
,
H.
,
2012
, “
A Fluid–Structure Interaction Model of Insect Flight with Flexible Wings
,”
J. Comput. Phys.
,
231
(
4
), pp.
1822
1847
. 10.1016/j.jcp.2011.11.005
39.
Ho
,
W.
, and
New
,
T.
,
2017
, “
Unsteady Numerical Investigation of Two Different Corrugated Airfoils
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
231
(
13
), pp.
2423
2437
. 10.1177/0954410016682539
40.
Arjangpay
,
A.
,
Darvizeh
,
A.
,
Tooski
,
M. Y.
, and
Ansari
,
R.
,
2018
, “
An Experimental and Numerical Investigation on Low Velocity Impact Response of a Composite Structure Inspired by Dragonfly Wing Configuration
,”
Compos. Struct.
,
184
, pp.
327
336
. 10.1016/j.compstruct.2017.10.006
41.
Mazumder
,
M.
,
Wanchoo
,
S.
,
McLeod
,
P.
,
Ballard
,
G.
,
Mozumdar
,
S.
, and
Caraballo
,
N.
,
1981
, “
Skin Friction Drag Measurements by LDV
,”
Appl. Opt.
,
20
(
16
), pp.
2832
2837
. 10.1364/AO.20.002832
42.
Hutchins
,
N.
, and
Choi
,
K. S.
,
2002
, “
Accurate Measurements of Local Skin Friction Coefficient Using Hot-Wire Anemometry
,”
Prog. Aerosp. Sci.
,
38
(
4–5
), pp.
421
446
. 10.1016/S0376-0421(02)00027-1
43.
Gadelmawla
,
E. S.
,
Koura
,
M. M.
,
Maksoud
,
T. M. A.
,
Elewa
,
I. M.
, and
Soliman
,
H. H.
,
2002
, “
Roughness Parameters
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
133
145
. 10.1016/S0924-0136(02)00060-2
44.
Yu
,
M.
,
Hermann
,
I.
,
Dai
,
Z.
, and
Gitis
,
N.
,
2013
, “
Mechanical and Frictional Properties of the Elytra of Five Species of Beetles
,”
J. Bionic Eng.
,
10
(
1
), pp.
77
83
. 10.1016/S1672-6529(13)60201-2
45.
Gao
,
C.
,
Meng
,
G.
,
Li
,
X.
,
Wu
,
M.
,
Liu
,
Y.
,
Li
,
X.
,
Zhao
,
X.
,
Lee
,
I.
, and
Feng
,
X.
,
2013
, “
Wettability of Dragonfly Wings: The Structure Detection and Theoretical Modeling
,”
Surf. Interface Anal.
,
45
(
2
), pp.
650
655
. 10.1002/sia.5105
46.
Güttler
,
A.
,
2017
,
High Accuracy Determination of Skin Friction Differences in an Air Channel Flow Based on Pressure Drop Measurements
,
KIT Scientific Publishing
,
Karlsruher, Germany
.
47.
Scott
,
L. P.
,
2010
, “
Differential Equations of Fluid Motion
,”
Appl. Comput. Fluid Mech.
, p.
173
.
48.
Dean
,
R. B.
,
1978
, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
215
223
. 10.1115/1.3448633
49.
Adrian
,
R. J.
,
2007
, “
Hairpin Vortex Organization in Wall Turbulence
,”
Phys. Fluids
,
19
(
4
), p.
041301
. 10.1063/1.2717527
50.
Anderson
,
J. D.
,
2010
,
Fundamentals of Aerodynamics
,
Tata McGraw-Hill Education
,
New York
.
51.
Choi
,
J.
,
Jeon
,
W. P.
, and
Choi
,
H.
,
2006
, “
Mechanism of Drag Reduction by Dimples on a Sphere
,”
Phys. Fluids
,
18
(
4
), p.
041702
. 10.1063/1.2191848
You do not currently have access to this content.