Abstract

Products made from additive manufacturing processes have attracted great attention in engineering, health care, and society at large. However, there is little knowledge about the failure of additively manufactured alloys, in particular, corrosion and wear seen in most engineering applications. The haphazard and inefficient usage of such alloys raised concerns about safety, compatibility, reliability, cost, and consumer satisfaction. To address those concerns, we studied the mechanisms of the most common failure modes, corrosion and wear, of alloys fabricated through additive manufacturing based on published literature. It was found that the processing conditions have profound influence on microstructure and thus corrosion and wear resistance of alloys. Because of the layered structure, the initiation and growth of both corrosion and wear exhibited anisotropic behavior. The insights from this review could be used as a reference of the state-of-the art and to help in the development of future additively manufactured alloys with improved corrosion and wear properties.

References

1.
Guessasma
,
S.
,
Zhang
,
W.
,
Zhu
,
J.
,
Belhabib
,
S.
, and
Nouri
,
H.
,
2015
, “
Challenges of Additive Manufacturing Technologies From an Optimisation Perspective
,”
Int. J. Simul. Multidiscip. Des. Optim.
,
6
(
13
), p.
A9
. 10.1051/smdo/2016001
2.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1
), pp.
327
342
. 10.1007/s00170-015-6994-5
3.
Wegner
,
N.
,
Kotzem
,
D.
,
Wessarges
,
Y.
,
Emminghaus
,
N.
,
Hoff
,
C.
,
Tenkamp
,
J.
,
Hermsdorf
,
J.
,
Overmeyer
,
L.
, and
Walther
,
F.
,
2019
, “
Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment
,”
Materials
,
12
(
18
), p.
2892
.
4.
Aliheidari
,
N.
,
Christ
,
J.
,
Tripuraneni
,
R.
,
Nadimpalli
,
S.
, and
Ameli
,
A.
,
2018
, “
Interlayer Adhesion and Fracture Resistance of Polymers Printed Through Melt Extrusion Additive Manufacturing Process
,”
Mater. Des.
,
156
, pp.
351
361
. 10.1016/j.matdes.2018.07.001
5.
Rosenthal
,
I.
,
Shneck
,
R.
, and
Stern
,
A.
,
2018
, “
Heat Treatment Effect on the Mechanical Properties and Fracture Mechanism in AlSi10Mg Fabricated by Additive Manufacturing Selective Laser Melting Process
,”
Mater. Sci. Eng. A
,
729
, pp.
310
322
. 10.1016/j.msea.2018.05.074
6.
Romano
,
S.
,
Brückner-Foit
,
A.
,
Brandão
,
A.
,
Gumpinger
,
J.
,
Ghidini
,
T.
, and
Beretta
,
S.
,
2018
, “
Fatigue Properties of AlSi10Mg Obtained by Additive Manufacturing: Defect-Based Modelling and Prediction of Fatigue Strength
,”
Engineering Fracture Mechanics
,
187
, pp.
165
189
.
7.
Uzan
,
N. E.
,
Ratzker
,
B.
,
Landau
,
P.
,
Kalabukhov
,
S.
, and
Frage
,
N.
,
2019
, “
Compressive Creep of AlSi10Mg Parts Produced by Selective Laser Melting Additive Manufacturing Technology
,”
Addit. Manuf.
,
29
, p.
100788
. 10.1016/j.addma.2019.100788
8.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
. 10.1115/1.4026524
9.
Clausen
,
A.
,
Aage
,
N.
, and
Sigmund
,
O.
,
2016
, “
Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load
,”
Engineering
,
2
(
2
), pp.
250
257
. 10.1016/J.ENG.2016.02.006
10.
Lou
,
X.
,
Song
,
M.
,
Emigh
,
P. W.
,
Othon
,
M. A.
, and
Andresen
,
P. L.
,
2017
, “
On the Stress Corrosion Crack Growth Behaviour in High Temperature Water of 316L Stainless Steel Made by Laser Powder Bed Fusion Additive Manufacturing
,”
Corros. Sci.
,
128
, pp.
140
153
. 10.1016/j.corsci.2017.09.017
11.
Sander
,
G.
,
Tan
,
J.
,
Balan
,
P.
,
Gharbi
,
O.
,
Feenstra
,
D.
,
Singer
,
L.
,
Thomas
,
S.
,
Kelly
,
R.
,
Scully
,
J. R.
, and
Birbilis
,
N.
,
2018
, “
Corrosion of Additively Manufactured Alloys: A Review
,”
Corrosion
,
74
(
12
), pp.
1318
1350
. 10.5006/2926
12.
Sander
,
G.
,
Thomas
,
S.
,
Cruz
,
V.
,
Jurg
,
M.
,
Birbilis
,
N.
,
Gao
,
X.
,
Brameld
,
M.
, and
Hutchinson
,
C.
,
2017
, “
On the Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting
,”
J. Electrochem. Soc.
,
164
(
6
), pp.
C250
C257
. 10.1149/2.0551706jes
13.
Melia
,
M. A.
,
Carroll
,
J. D.
,
Whetten
,
S. R.
,
Esmaeely
,
S. N.
,
Locke
,
J.
,
White
,
E.
,
Anderson
,
I.
,
Chandross
,
M.
,
Michael
,
J. R.
,
Argibay
,
N.
,
Schindelholz
,
E. J.
, and
Kustas
,
A. B.
,
2019
, “
Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy
,”
Addit. Manuf.
,
29
, p.
100833
. 10.1016/j.addma.2019.100833
14.
Ibrahim
,
H.
,
Jahadakbar
,
A.
,
Dehghanghadikolaei
,
A.
,
Shayesteh Moghaddam
,
N.
,
Amerinatanzi
,
A.
, and
Elahinia
,
M.
,
2018
, “
In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications
,”
Metals
,
8
(
3
), p.
164
. 10.3390/met8030164
15.
Lodhi
,
M. J. K.
,
Deen
,
K. M.
, and
Haider
,
W.
,
2018
, “
Corrosion Behavior of Additively Manufactured 316L Stainless Steel in Acidic Media
,”
Materialia
,
2
, pp.
111
121
. 10.1016/j.mtla.2018.06.015
16.
Kim
,
S.
,
Lee
,
M.
, and
Chou
,
P. H.
,
2014
, “
Energy Harvesting From Anti-corrosion Power Sources
,”
2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
,
La Jolla, CA
,
Aug. 11–13
.
17.
Gu
,
J.
,
Ding
,
J.
,
Williams
,
S. W.
,
Gu
,
H.
,
Ma
,
P.
, and
Zhai
,
Y.
,
2016
, “
The Effect of Inter-layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys
,”
J. Mater. Process. Technol.
,
230
, pp.
26
34
. 10.1016/j.jmatprotec.2015.11.006
18.
Girelli
,
L.
,
Tocci
,
M.
,
Gelfi
,
M.
, and
Pola
,
A.
,
2019
, “
Study of Heat Treatment Parameters for Additively Manufactured AlSi10Mg in Comparison With Corresponding Cast Alloy
,”
Mater. Sci. Eng., A
,
739
, pp.
317
328
. 10.1016/j.msea.2018.10.026
19.
Chen
,
Y.
,
Jha
,
S.
,
Raut
,
A.
,
Parkinson
,
D. Y.
,
Zhang
,
B.
,
Elwany
,
A.
, and
Liang
,
H.
,
2021
, “
Tomography of 3D-Printed Lattice Structured Aluminum-Silicon Alloy and Its Deformation
,”
3D Print. Addit. Manuf.
,
8
(
1
), pp.
42
50
. 10.1089/3dp.2019.0200
20.
Gu
,
J.
,
Ding
,
J.
,
Williams
,
S. W.
,
Gu
,
H.
,
Bai
,
J.
,
Zhai
,
Y.
, and
Ma
,
P.
,
2016
, “
The Strengthening Effect of Inter-layer Cold Working and Post-deposition Heat Treatment on the Additively Manufactured Al–6.3Cu Alloy
,”
Mater. Sci. Eng. A
,
651
, pp.
18
26
. 10.1016/j.msea.2015.10.101
21.
Qi
,
Z.
,
Qi
,
B.
,
Cong
,
B.
,
Sun
,
H.
,
Zhao
,
G.
, and
Ding
,
J.
,
2019
, “
Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2024 Aluminum Alloy Components: As-Deposited and Post Heat-Treated
,”
J. Manuf. Process.
,
40
, pp.
27
36
. 10.1016/j.jmapro.2019.03.003
22.
Gu
,
J.
,
Yang
,
S.
,
Gao
,
M.
,
Bai
,
J.
,
Zhai
,
Y.
, and
Ding
,
J.
,
2020
, “
Micropore Evolution in Additively Manufactured Aluminum Alloys Under Heat Treatment and Inter-layer Rolling
,”
Mater. Des.
,
186
, p.
108288
. 10.1016/j.matdes.2019.108288
23.
Jha
,
S.
,
Ponce
,
V.
, and
Seminario
,
J. M.
,
2018
, “
Investigating the Effects of Vacancies on Self-diffusion in Silicon Clusters Using Classical Molecular Dynamics
,”
J. Mol. Model.
,
24
(
10
), p.
290
. 10.1007/s00894-018-3814-5
24.
Jha
,
S.
,
Chen
,
Y.
,
Wang
,
R.
,
Gharib
,
M.
, and
Liang
,
H.
,
2019
, “
Design and Synthesis of a High Performance Coating
,”
ASME 2019 International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
,
Nov. 11–14
.
25.
Sabban
,
R.
,
Bahl
,
S.
,
Chatterjee
,
K.
, and
Suwas
,
S.
,
2019
, “
Globularization Using Heat Treatment in Additively Manufactured Ti-6Al-4V for High Strength and Toughness
,”
Acta Mater.
,
162
, pp.
239
254
. 10.1016/j.actamat.2018.09.064
26.
Zadpoor
,
A. A.
,
2019
, “
Additively Manufactured Porous Metallic Biomaterials
,”
J. Mater. Chem., B
,
7
(
26
), pp.
4088
4117
. 10.1039/C9TB00420C
27.
Ahmadi
,
S. M.
,
Yavari
,
S. A.
,
Wauthle
,
R.
,
Pouran
,
B.
,
Schrooten
,
J.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2015
, “
Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties
,”
Materials
,
8
(
4
), pp.
1871
1896
.
28.
Luo
,
J. P.
,
Huang
,
Y. J.
,
Xu
,
J. Y.
,
Sun
,
J. F.
,
Dargusch
,
M. S.
,
Hou
,
C. H.
,
Ren
,
L.
,
Wang
,
R. Z.
,
Ebel
,
T.
, and
Yan
,
M.
,
2020
, “
Additively Manufactured Biomedical Ti-Nb-Ta-Zr Lattices With Tunable Young’s Modulus: Mechanical Property, Biocompatibility, and Proteomics Analysis
,”
Mater. Sci. Eng., C
,
114
, p.
110903
. 10.1016/j.msec.2020.110903
29.
Chudinova
,
E. A.
,
Surmeneva
,
M. A.
,
Timin
,
A. S.
,
Karpov
,
T. E.
,
Wittmar
,
A.
,
Ulbricht
,
M.
,
Ivanova
,
A.
,
Loza
,
K.
,
Prymak
,
O.
,
Koptyug
,
A.
,
Epple
,
M.
, and
Surmenev
,
R. A.
,
2019
, “
Adhesion, Proliferation, and Osteogenic Differentiation of Human Mesenchymal Stem Cells on Additively Manufactured Ti6Al4 V Alloy Scaffolds Modified With Calcium Phosphate Nanoparticles
,”
Colloids Surf., B
,
176
, pp.
130
139
. 10.1016/j.colsurfb.2018.12.047
30.
Ho
,
Y.-H.
,
Man
,
K.
,
Joshi
,
S. S.
,
Pantawane
,
M. V.
,
Wu
,
T.-C.
,
Yang
,
Y.
, and
Dahotre
,
N. B.
,
2020
, “
In-vitro Biomineralization and Biocompatibility of Friction Stir Additively Manufactured AZ31B Magnesium Alloy-Hydroxyapatite Composites
,”
Bioact. Mater.
,
5
(
4
), pp.
891
901
. 10.1016/j.bioactmat.2020.06.009
31.
Verlee
,
B.
,
Dormal
,
T.
, and
Lecomte-Beckers
,
J.
,
2012
, “
Density and Porosity Control of Sintered 316L Stainless Steel Parts Produced by Additive Manufacturing
,”
Powder Metall.
,
55
(
4
), pp.
260
267
. 10.1179/0032589912Z.00000000082
32.
Kong
,
D.
,
Ni
,
X.
,
Dong
,
C.
,
Lei
,
X.
,
Zhang
,
L.
,
Man
,
C.
,
Yao
,
J.
,
Cheng
,
X.
, and
Li
,
X.
,
2018
, “
Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting
,”
Mater. Des.
,
152
, pp.
88
101
. 10.1016/j.matdes.2018.04.058
33.
Li
,
H.
,
Ramezani
,
M.
,
Li
,
M.
,
Ma
,
C.
, and
Wang
,
J.
,
2018
, “
Effect of Process Parameters on Tribological Performance of 316L Stainless Steel Parts Fabricated by Selective Laser Melting
,”
Manuf. Lett.
,
16
, pp.
36
39
. 10.1016/j.mfglet.2018.04.003
34.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
. 10.1016/j.actamat.2016.07.019
35.
Ganesh
,
P.
,
Giri
,
R.
,
Kaul
,
R.
,
Sankar
,
P. R.
,
Tiwari
,
P.
,
Atulkar
,
A.
,
Porwal
,
R.
,
Dayal
,
R.
, and
Kukreja
,
L.
,
2012
, “
Studies on Pitting Corrosion and Sensitization in Laser Rapid Manufactured Specimens of Type 316L Stainless Steel
,”
Mater. Des.
,
39
, pp.
509
521
. 10.1016/j.matdes.2012.03.011
36.
Chen
,
X.
,
Li
,
J.
,
Cheng
,
X.
,
Wang
,
H.
, and
Huang
,
Z.
,
2018
, “
Effect of Heat Treatment on Microstructure, Mechanical and Corrosion Properties of Austenitic Stainless Steel 316L Using Arc Additive Manufacturing
,”
Mater. Sci. Eng., A
,
715
, pp.
307
314
. 10.1016/j.msea.2017.10.002
37.
Lou
,
X.
,
Andresen
,
P. L.
, and
Rebak
,
R. B.
,
2018
, “
Oxide Inclusions in Laser Additive Manufactured Stainless Steel and Their Effects on Impact Toughness and Stress Corrosion Cracking Behavior
,”
J. Nucl. Mater.
,
499
, pp.
182
190
. 10.1016/j.jnucmat.2017.11.036
38.
Feenstra
,
D.
,
Cruz
,
V.
,
Gao
,
X.
,
Molotnikov
,
A.
, and
Birbilis
,
N.
,
2020
, “
Effect of Build Height on the Properties of Large Format Stainless Steel 316L Fabricated via Directed Energy Deposition
,”
Addit. Manuf.
,
34
, p.
101205
. 10.1016/j.addma.2020.101205
39.
Baek
,
S.-W.
,
Song
,
E. J.
,
Kim
,
J. H.
,
Jung
,
M.
,
Baek
,
U. B.
, and
Nahm
,
S. H.
,
2017
, “
Hydrogen Embrittlement of 3-D Printing Manufactured Austenitic Stainless Steel Part for Hydrogen Service
,”
Scr. Mater.
,
130
, pp.
87
90
. 10.1016/j.scriptamat.2016.11.020
40.
Schaller
,
R. F.
,
Mishra
,
A.
,
Rodelas
,
J. M.
,
Taylor
,
J. M.
, and
Schindelholz
,
E. J.
,
2018
, “
The Role of Microstructure and Surface Finish on the Corrosion of Selective Laser Melted 304L
,”
J. Electrochem. Soc.
,
165
(
5
), p.
C234
. 10.1149/2.0431805jes
41.
Melia
,
M. A.
,
Nguyen
,
H.-D. A.
,
Rodelas
,
J. M.
, and
Schindelholz
,
E. J.
,
2019
, “
Corrosion Properties of 304L Stainless Steel Made by Directed Energy Deposition Additive Manufacturing
,”
Corros. Sci.
,
152
, pp.
20
30
. 10.1016/j.corsci.2019.02.029
42.
Dai
,
N.
,
Zhang
,
L.-C.
,
Zhang
,
J.
,
Zhang
,
X.
,
Ni
,
Q.
,
Chen
,
Y.
,
Wu
,
M.
, and
Yang
,
C.
,
2016
, “
Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes
,”
Corros. Sci.
,
111
, pp.
703
710
. 10.1016/j.corsci.2016.06.009
43.
Dai
,
N.
,
Zhang
,
L.-C.
,
Zhang
,
J.
,
Chen
,
Q.
, and
Wu
,
M.
,
2016
, “
Corrosion Behavior of Selective Laser Melted Ti-6Al-4V Alloy in NaCl Solution
,”
Corros. Sci.
,
102
, pp.
484
489
. 10.1016/j.corsci.2015.10.041
44.
Dai
,
N.
,
Zhang
,
J.
,
Chen
,
Y.
, and
Zhang
,
L.-C.
,
2017
, “
Heat Treatment Degrading the Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
C428
C434
. 10.1149/2.1481707jes
45.
Chandramohan
,
P.
,
Bhero
,
S.
,
Obadele
,
B. A.
, and
Olubambi
,
P. A.
,
2017
, “
Laser Additive Manufactured Ti–6Al–4V Alloy: Tribology and Corrosion Studies
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
3051
3061
. 10.1007/s00170-017-0410-2
46.
Yang
,
J.
,
Yang
,
H.
,
Yu
,
H.
,
Wang
,
Z.
, and
Zeng
,
X.
,
2017
, “
Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution
,”
Metall. Mater. Trans. A
,
48
(
7
), pp.
3583
3593
. 10.1007/s11661-017-4087-9
47.
Wu
,
B.
,
Pan
,
Z.
,
Li
,
S.
,
Cuiuri
,
D.
,
Ding
,
D.
, and
Li
,
H.
,
2018
, “
The Anisotropic Corrosion Behaviour of Wire Arc Additive Manufactured Ti-6Al-4V Alloy in 3.5% NaCl Solution
,”
Corros. Sci.
,
137
, pp.
176
183
. 10.1016/j.corsci.2018.03.047
48.
Liang
,
Z.
,
Tang
,
B.
,
Gui
,
Y.
, and
Zhao
,
Q.
,
2020
, “
Corrosion Resistance of 3D-Printed and Cold-Rolled Titanium Alloys at 600°C in Air and Air-SO2 Environments
,”
Mater. Today Commun.
,
24
, p.
101055
. 10.1016/j.mtcomm.2020.101055
49.
Meenashisundaram
,
G. K.
,
Wang
,
N.
,
Maskomani
,
S.
,
Lu
,
S.
,
Anantharajan
,
S. K.
,
Dheen
,
S. T.
,
Nai
,
S. M. L.
,
Fuh
,
J. Y. H.
, and
Wei
,
J.
,
2020
, “
Fabrication of Ti+ Mg Composites by Three-Dimensional Printing of Porous Ti and Subsequent Pressureless Infiltration of Biodegradable Mg
,”
Mater. Sci. Eng., C
,
108
, p.
110478
. 10.1016/j.msec.2019.110478
50.
Chen
,
Y.
,
Zhang
,
J.
,
Gu
,
X.
,
Dai
,
N.
,
Qin
,
P.
, and
Zhang
,
L.-C.
,
2018
, “
Distinction of Corrosion Resistance of Selective Laser Melted Al-12Si Alloy on Different Planes
,”
J. Alloys Compd.
,
747
, pp.
648
658
. 10.1016/j.jallcom.2018.03.062
51.
Leon
,
A.
, and
Aghion
,
E.
,
2017
, “
Effect of Surface Roughness on Corrosion Fatigue Performance of AlSi10Mg Alloy Produced by Selective Laser Melting (SLM)
,”
Mater. Charact.
,
131
, pp.
188
194
. 10.1016/j.matchar.2017.06.029
52.
Fathi
,
P.
,
Mohammadi
,
M.
,
Duan
,
X.
, and
Nasiri
,
A. M.
,
2018
, “
A Comparative Study on Corrosion and Microstructure of Direct Metal Laser Sintered AlSi10Mg_200C and Die Cast A360. 1 Aluminum
,”
J. Mater. Process. Technol.
,
259
, pp.
1
14
. 10.1016/j.jmatprotec.2018.04.013
53.
Cabrini
,
M.
,
Calignano
,
F.
,
Fino
,
P.
,
Lorenzi
,
S.
,
Lorusso
,
M.
,
Manfredi
,
D.
,
Testa
,
C.
, and
Pastore
,
T.
,
2018
, “
Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion
,”
Materials
,
11
(
7
), p.
1051
. 10.3390/ma11071051
54.
Rafieazad
,
M.
,
Mohammadi
,
M.
, and
Nasiri
,
A. M.
,
2019
, “
On Microstructure and Early Stage Corrosion Performance of Heat Treated Direct Metal Laser Sintered AlSi10Mg
,”
Addit. Manuf.
,
28
, pp.
107
119
. 10.1016/j.addma.2019.04.023
55.
Rubben
,
T.
,
Revilla
,
R. I.
, and
De Graeve
,
I.
,
2019
, “
Influence of Heat Treatments on the Corrosion Mechanism of Additive Manufactured AlSi10Mg
,”
Corros. Sci.
,
147
, pp.
406
415
. 10.1016/j.corsci.2018.11.038
56.
Zakay
,
A.
, and
Aghion
,
E.
,
2019
, “
Effect of Post-Heat Treatment on the Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing
,”
JOM
,
71
(
3
), pp.
1150
1157
. 10.1007/s11837-018-3298-x
57.
Cabrini
,
M.
,
Lorenzi
,
S.
,
Testa
,
C.
,
Pastore
,
T.
,
Manfredi
,
D.
,
Lorusso
,
M.
,
Calignano
,
F.
, and
Fino
,
P.
,
2019
, “
Statistical Approach for Electrochemical Evaluation of the Effect of Heat Treatments on the Corrosion Resistance of AlSi10Mg Alloy by Laser Powder Bed Fusion
,”
Electrochim. Acta
,
305
, pp.
459
466
. 10.1016/j.electacta.2019.03.103
58.
Fathi
,
P.
,
Mohammadi
,
M.
,
Duan
,
X.
, and
Nasiri
,
A.
,
2019
, “
Effects of Surface Finishing Procedures on Corrosion Behavior of DMLS-AlSi10Mg_200C Alloy Versus Die-Cast A360. 1 Aluminum
,”
JOM
,
71
(
5
), pp.
1748
1759
. 10.1007/s11837-019-03344-8
59.
Fathi
,
P.
,
Rafieazad
,
M.
,
Duan
,
X.
,
Mohammadi
,
M.
, and
Nasiri
,
A.
,
2019
, “
On Microstructure and Corrosion Behaviour of AlSi10Mg Alloy With Low Surface Roughness Fabricated by Direct Metal Laser Sintering
,”
Corros. Sci.
,
157
, pp.
126
145
. 10.1016/j.corsci.2019.05.032
60.
Xing
,
X.
,
Duan
,
X.
,
Jiang
,
T.
,
Wang
,
J.
, and
Jiang
,
F.
,
2019
, “
Ultrasonic Peening Treatment Used to Improve Stress Corrosion Resistance of AlSi10Mg Components Fabricated Using Selective Laser Melting
,”
Metals
,
9
(
1
), p.
103
. 10.3390/met9010103
61.
Gharbi
,
O.
,
Jiang
,
D.
,
Feenstra
,
D.
,
Kairy
,
S.
,
Wu
,
Y.
,
Hutchinson
,
C.
, and
Birbilis
,
N.
,
2018
, “
On the Corrosion of Additively Manufactured Aluminium Alloy AA2024 Prepared by Selective Laser Melting
,”
Corros. Sci.
,
143
, pp.
93
106
. 10.1016/j.corsci.2018.08.019
62.
Ni
,
X.
,
Zhang
,
L.
,
Wu
,
W.
,
Zhu
,
D.
,
Kong
,
D.
,
Dong
,
C.
, and
Zhu
,
G.
,
2020
, “
Functionally Nb Graded Inconel 718 Alloys Fabricated by Laser Melting Deposition: Mechanical Properties and Corrosion Behavior
,”
Anti-Corros. Methods Mater.
,
67
(
1
), pp.
16
23
. 10.1108/acmm-06-2019-2131
63.
Marattukalam
,
J. J.
,
Singh
,
A. K.
,
Datta
,
S.
,
Das
,
M.
,
Balla
,
V. K.
,
Bontha
,
S.
, and
Kalpathy
,
S. K.
,
2015
, “
Microstructure and Corrosion Behavior of Laser Processed NiTi Alloy
,”
Mater. Sci. Eng., C
,
57
, pp.
309
313
. 10.1016/j.msec.2015.07.067
64.
Shuai
,
C.
,
Yang
,
W.
,
Yang
,
Y.
,
Pan
,
H.
,
He
,
C.
,
Qi
,
F.
,
Xie
,
D.
, and
Liang
,
H.
,
2019
, “
Selective Laser Melted Fe-Mn Bone Scaffold: Microstructure, Corrosion Behavior and Cell Response
,”
Mater. Res. Express.
,
7
(
1
), p.
015404
. 10.1088/2053-1591/ab62f5
65.
Zhang
,
C.
,
Li
,
X.
,
Liu
,
S.-Q.
,
Liu
,
H.
,
Yu
,
L.-J.
, and
Liu
,
L.
,
2019
, “
3D Printing of Zr-Based Bulk Metallic Glasses and Components for Potential Biomedical Applications
,”
J. Alloys Compd.
,
790
, pp.
963
973
. 10.1016/j.jallcom.2019.03.275
66.
Cheng
,
E. C.
,
1923
,
Production of Non-corrosive Alloys
,
Columbia University
,
New York
.
67.
Qian
,
M.
, and
DuPont
,
J. N.
,
2010
, “
Microsegregation-Related Pitting Corrosion Characteristics of AL-6XN Superaustenitic Stainless Steel Laser Welds
,”
Corros. Sci.
,
52
(
10
), pp.
3548
3553
. 10.1016/j.corsci.2010.07.007
68.
Saeidi
,
K.
,
Gao
,
X.
,
Zhong
,
Y.
, and
Shen
,
Z. J.
,
2015
, “
Hardened Austenite Steel With Columnar Sub-grain Structure Formed by Laser Melting
,”
Mater. Sci. Eng. A
,
625
, pp.
221
229
. 10.1016/j.msea.2014.12.018
69.
Krishnan
,
S.
,
Dumbre
,
J.
,
Bhatt
,
S.
,
Akinlabi
,
E. T.
, and
Ramalingam
,
R.
,
2013
, “
Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI 304L Austenitic Stainless Steel
,”
Int. J. Mech. Aerosp. Ind. Mechatron. Eng.
,
7
(
4
), pp.
239
242
.
70.
Kuphasuk
,
C.
,
Oshida
,
Y.
,
Andres
,
C. J.
,
Hovijitra
,
S. T.
,
Barco
,
M. T.
, and
Brown
,
D. T.
,
2001
, “
Electrochemical Corrosion of Titanium and Titanium-Based Alloys
,”
J. Prosthet. Dent.
,
85
(
2
), pp.
195
202
. 10.1067/mpr.2001.113029
71.
Zhou
,
Y.
,
Wen
,
S.
,
Song
,
B.
,
Zhou
,
X.
,
Teng
,
Q.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2016
, “
A Novel Titanium Alloy Manufactured by Selective Laser Melting: Microstructure, High Temperature Oxidation Resistance
,”
Mater. Des.
,
89
, pp.
1199
1204
. 10.1016/j.matdes.2015.10.092
72.
Li
,
Q.
,
Jiang
,
G.
,
Wang
,
C.
,
Dong
,
J.
, and
He
,
G.
,
2015
, “
Mechanical Degradation of Porous Titanium With Entangled Structure Filled With Biodegradable Magnesium in Hanks’ Solution
,”
Mater. Sci. Eng., C
,
57
, pp.
349
354
. 10.1016/j.msec.2015.08.008
73.
Gupta
,
M.
, and
Meenashisundaram
,
G. K.
,
2015
,
Insight Into Designing Biocompatible Magnesium Alloys and Composites: Processing, Mechanical and Corrosion Characteristics
,
Springer
,
New York
.
74.
Lichte
,
P.
,
Pape
,
H.
,
Pufe
,
T.
,
Kobbe
,
P.
, and
Fischer
,
H.
,
2011
, “
Scaffolds for Bone Healing: Concepts, Materials and Evidence
,”
Injury
,
42
(
6
), pp.
569
573
. 10.1016/j.injury.2011.03.033
75.
Ouyang
,
S.
,
Huang
,
Q.
,
Liu
,
Y.
,
Ouyang
,
Z.
, and
Liang
,
L.
,
2019
, “
Powder Metallurgical Ti-Mg Metal-Metal Composites Facilitate Osteoconduction and Osseointegration for Orthopedic Application
,”
Bioact. Mater.
,
4
(
1
), pp.
37
42
. 10.1016/j.bioactmat.2018.12.001
76.
Treves
,
C.
,
Martinesi
,
M.
,
Stio
,
M.
,
Gutiérrez
,
A.
,
Jiménez
,
J. A.
, and
López
,
M. F.
,
2010
, “
In vitro Biocompatibility Evaluation of Surface-Modified Titanium Alloys
,”
J. Biomed. Mater. Res., Part A
,
92
(
4
), pp.
1623
1634
. 10.1002/jbm.a.32507
77.
Balog
,
M.
,
Ibrahim
,
A. M. H.
,
Krizik
,
P.
,
Bajana
,
O.
,
Klimova
,
A.
,
Catic
,
A.
, and
Schauperl
,
Z.
,
2019
, “
Bioactive Ti+ Mg Composites Fabricated by Powder Metallurgy: The Relation Between the Microstructure and Mechanical Properties
,”
J. Mech. Behav. Biomed. Mater.
,
90
, pp.
45
53
. 10.1016/j.jmbbm.2018.10.008
78.
Shabestari
,
S.
, and
Moemeni
,
H.
,
2004
, “
Effect of Copper and Solidification Conditions on the Microstructure and Mechanical Properties of Al–Si–Mg Alloys
,”
J. Mater. Process. Technol.
,
153
, pp.
193
198
. 10.1016/j.jmatprotec.2004.04.302
79.
Kempen
,
K.
,
Thijs
,
L.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2012
, “
Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting
,”
Phys. Procedia
,
39
, pp.
439
446
. 10.1016/j.phpro.2012.10.059
80.
Louvis
,
E.
,
Fox
,
P.
, and
Sutcliffe
,
C. J.
,
2011
, “
Selective Laser Melting of Aluminium Components
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
275
284
. 10.1016/j.jmatprotec.2010.09.019
81.
Asgari
,
H.
,
Baxter
,
C.
,
Hosseinkhani
,
K.
, and
Mohammadi
,
M.
,
2017
, “
On Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg_200C Using Recycled Powder
,”
Mater. Sci. Eng., A
,
707
, pp.
148
158
. 10.1016/j.msea.2017.09.041
82.
Manfredi
,
D.
,
Ambrosio
,
E.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Biamino
,
S.
,
Pavese
,
M.
,
Atzeni
,
E.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Direct Metal Laser Sintering: An Additive Manufacturing Technology Ready to Produce Lightweight Structural Parts for Robotic Applications
,”
Metall. Ital.
, pp.
15
24
. 10.3390/ma6030856
83.
Manfredi
,
D.
,
Calignano
,
F.
,
Krishnan
,
M.
,
Canali
,
R.
,
Ambrosio
,
E. P.
, and
Atzeni
,
E.
,
2013
, “
From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed Through Direct Metal Laser Sintering
,”
Materials
,
6
(
3
), pp.
856
869
. 10.3390/ma6030856
84.
Rosenthal
,
I.
,
Stern
,
A.
, and
Frage
,
N.
,
2014
, “
Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology
,”
Metallogr. Microstruct. Anal.
,
3
(
6
), pp.
448
453
. 10.1007/s13632-014-0168-y
85.
Gu
,
T.
,
Chen
,
B.
,
Tan
,
C.
, and
Feng
,
J.
,
2019
, “
Microstructure Evolution and Mechanical Properties of Laser Additive Manufacturing of High Strength Al-Cu-Mg Alloy
,”
Opt. Laser Technol.
,
112
, pp.
140
150
. 10.1016/j.optlastec.2018.11.008
86.
Niskanen
,
P.
,
Sanders Jr
,
T.
,
Rinker
,
J.
, and
Marek
,
M.
,
1982
, “
Corrosion of Aluminum Alloys Containing Lithium
,”
Corros. Sci.
,
22
(
4
), pp.
283
304
. 10.1016/0010-938X(82)90031-2
87.
Scamans
,
G.
,
Birbilis
,
N.
, and
Buchheit
,
R.
,
2010
, “Corrosion of Aluminum and Its Alloys,”
Shreir’s Corrosion
,
Elsevier
,
New York
, pp.
1974
2010
.
88.
Lebouil
,
S.
,
Tardelli
,
J.
,
Rocca
,
E.
,
Volovitch
,
P.
, and
Ogle
,
K.
,
2014
, “
Dealloying of Al2Cu, Al7Cu2Fe, and Al2CuMg Intermetallic Phases to Form Nanoparticulate Copper Films
,”
Mater. Corros.
,
65
(
4
), pp.
416
424
. 10.1002/maco.201307550
89.
Bucheit
,
R.
,
Grant
,
R.
,
Hlava
,
P.
,
McKenzie
,
B.
, and
Zender
,
G.
,
1997
, “
Local Dissolution Phenomena Associated With S Phase (Al2CuMg) Particles in Aluminium Alloy 2024-T3
,”
J. Electrochem. Soc.
,
144
(
8
), pp.
2621
2628
. 10.1149/1.1837874
90.
Birbilis
,
N.
,
Zhu
,
Y.
,
Kairy
,
S.
,
Glenn
,
M.
,
Nie
,
J.-F.
,
Morton
,
A.
,
Gonzalez-Garcia
,
Y.
,
Terryn
,
H.
,
Mol
,
J.
, and
Hughes
,
A.
,
2016
, “
A Closer Look at Constituent Induced Localised Corrosion in Al-Cu-Mg Alloys
,”
Corros. Sci.
,
113
, pp.
160
171
. 10.1016/j.corsci.2016.10.018
91.
Nis
,
K.
,
1990
, “
Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron
,”
J. Electrochem. Soc.
,
137
(
1
), p.
69
. 10.1149/1.2086441
92.
Birbilis
,
N.
, and
Buchheit
,
R. G.
,
2005
, “
Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys an Experimental Survey and Discussion
,”
J. Electrochem. Soc.
,
152
(
4
), pp.
B140
B151
. 10.1149/1.1869984
93.
Scully
,
J.
,
Knight
,
T.
,
Buchheit
,
R.
, and
Peebles
,
D.
,
1993
, “
Electrochemical Characteristics of the Al2Cu, Al3Ta and Al3Zr Intermetallic Phases and Their Relevancy to the Localized Corrosion of Al Alloys
,”
Corros. Sci.
,
35
(
1–4
), pp.
185
195
. 10.1016/0010-938X(93)90148-A
94.
Tao
,
J.
,
2016
, “Surface Composition and Corrosion Behavior of an Al-Cu Alloy”.
95.
Chou
,
D.-T.
,
Wells
,
D.
,
Hong
,
D.
,
Lee
,
B.
,
Kuhn
,
H.
, and
Kumta
,
P. N.
,
2013
, “
Novel Processing of Iron–Manganese Alloy-Based Biomaterials by Inkjet 3-D Printing
,”
Acta Biomater.
,
9
(
10
), pp.
8593
8603
. 10.1016/j.actbio.2013.04.016
96.
Yang
,
C.
,
Zhang
,
C.
,
Xing
,
W.
, and
Liu
,
L.
,
2018
, “
3D Printing of Zr-Based Bulk Metallic Glasses With Complex Geometries and Enhanced Catalytic Properties
,”
Intermetallics
,
94
, pp.
22
28
. 10.1016/j.intermet.2017.12.018
97.
Telford
,
M.
,
2004
, “
The Case for Bulk Metallic Glass
,”
Mater. Today
,
7
(
3
), pp.
36
43
. 10.1016/S1369-7021(04)00124-5
98.
Tran
,
T. Q.
,
Chinnappan
,
A.
,
Lee
,
J. K. Y.
,
Loc
,
N. H.
,
Tran
,
L. T.
,
Wang
,
G.
,
Kumar
,
V. V.
,
Jayathilaka
,
W.
,
Ji
,
D.
,
Doddamani
,
M.
, and
Ramakrishna
,
S.
,
2019
, “
3D Printing of Highly Pure Copper
,”
Metals
,
9
(
7
), p.
756
. 10.3390/met9070756
99.
Shen
,
C.
,
Pan
,
Z.
,
Ding
,
D.
,
Yuan
,
L.
,
Nie
,
N.
,
Wang
,
Y.
,
Luo
,
D.
,
Cuiuri
,
D.
,
van Duin
,
S.
, and
Li
,
H.
,
2018
, “
The Influence of Post-production Heat Treatment on the Multi-directional Properties of Nickel-Aluminum Bronze Alloy Fabricated Using Wire-Arc Additive Manufacturing Process
,”
Addit. Manuf.
,
23
, pp.
411
421
. 10.1016/j.addma.2018.08.008
100.
Deng
,
Z.
,
Gingerich
,
M. B.
,
Han
,
T.
, and
Dapino
,
M. J.
,
2018
, “
Yttria-Stabilized Zirconia-Aluminum Matrix Composites via Ultrasonic Additive Manufacturing
,”
Composites, Part B
,
151
, pp.
215
221
. 10.1016/j.compositesb.2018.06.001
101.
Hildreth
,
O. J.
,
Nassar
,
A. R.
,
Chasse
,
K. R.
, and
Simpson
,
T. W.
,
2016
, “
Dissolvable Metal Supports for 3D Direct Metal Printing
,”
3D Print. Addit. Manuf.
,
3
(
2
), pp.
90
97
. 10.1089/3dp.2016.0013
102.
Lefky
,
C. S.
,
Gallmeyer
,
T. G.
,
Moorthy
,
S.
,
Stebner
,
A.
, and
Hildreth
,
O. J.
,
2019
, “
Microstructure and Corrosion Properties of Sensitized Laser Powder Bed Fusion Printed Inconel 718 to Dissolve Support Structures in a Self-Terminating Manner
,”
Addit. Manuf.
,
27
, pp.
526
532
. 10.1016/j.addma.2019.03.020
103.
Nassar
,
A.
, and
Reutzel
,
E.
,
2015
, “
Beyond Layer-by-Layer Additive Manufacturing – Voxel-wise Directed Energy Deposition
,”
Solid Freeform Fabr Symp Proc
,
Austin, TX
,
Aug. 10–12
.
104.
Fontana
,
M. G.
,
2005
,
Corrosion Engineering
,
Tata McGraw-Hill Education
.
105.
Rechnitz
,
G. A.
,
1963
,
Controlled-Potential Analysis
,
Pergamon
,
New York
.
106.
Isaacs
,
H. S.
,
2002
, “
Aspects of Corrosion From the ECS Publications
,”
J. Electrochem. Soc.
,
149
(
12
), pp.
S85
S85
. 10.1149/1.1520544
107.
Pourbaix
,
M.
,
1984
, “
Electrochemical Corrosion of Metallic Biomaterials
,”
Biomaterials
,
5
(
3
), pp.
122
134
. 10.1016/0142-9612(84)90046-2
108.
Silverman
,
D.
, and
Revie
,
W.
,
2000
,
Uhlig’s Corrosion Handbook
.
109.
Sun
,
Y.
,
Moroz
,
A.
, and
Alrbaey
,
K.
,
2014
, “
Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel
,”
J. Mater. Eng. Perform.
,
23
(
2
), pp.
518
526
. 10.1007/s11665-013-0784-8
110.
Ziętala
,
M.
,
Durejko
,
T.
,
Polański
,
M.
,
Kunce
,
I.
,
Płociński
,
T.
,
Zieliński
,
W.
,
Łazińska
,
M.
,
Stępniowski
,
W.
,
Czujko
,
T.
,
Kurzydłowski
,
K. J.
, and
Bojar
,
Z.
,
2016
, “
The Microstructure, Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated Using Laser Engineered Net Shaping
,”
Mater. Sci. Eng., A
,
677
, pp.
1
10
. 10.1016/j.msea.2016.09.028
111.
Lodhi
,
M. J. K.
,
Deen
,
K. M.
,
Greenlee-Wacker
,
M. C.
, and
Haider
,
W.
,
2019
, “
Additively Manufactured 316L Stainless Steel With Improved Corrosion Resistance and Biological Response for Biomedical Applications
,”
Addit. Manuf.
,
27
, pp.
8
19
. 10.1016/j.addma.2019.02.005
112.
Bower
,
K.
,
Murray
,
S.
,
Reinhart
,
A.
, and
Nieto
,
A.
,
2020
, “
Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy in Salt Fog Environment
,”
Results Mater.
,
8
, p.
100122
. 10.1016/j.rinma.2020.100122
113.
De Damborenea
,
J.
,
Arenas
,
M.
,
Larosa
,
M. A.
,
Jardini
,
A. L.
,
de Carvalho Zavaglia
,
C. A.
, and
Conde
,
A.
,
2017
, “
Corrosion of Ti6Al4 V Pins Produced by Direct Metal Laser Sintering
,”
Appl. Surf. Sci.
,
393
, pp.
340
347
. 10.1016/j.apsusc.2016.10.031
114.
Assis
,
S. L. d.
,
Wolynec
,
S.
, and
Costa
,
I.
,
2006
, “
Corrosion Characterization of Titanium Alloys by Electrochemical Techniques
,”
Electrochem. Impedance Spectrosc.
,
51
(
8
), pp.
1815
1819
. 10.1016/j.electacta.2005.02.121
115.
Oliveira
,
N. T. C.
, and
Guastaldi
,
A. C.
,
2009
, “
Electrochemical Stability and Corrosion Resistance of Ti–Mo Alloys for Biomedical Applications
,”
Acta Biomater.
,
5
(
1
), pp.
399
405
. 10.1016/j.actbio.2008.07.010
116.
Revilla
,
R. I.
,
Liang
,
J.
,
Godet
,
S.
, and
De Graeve
,
I.
,
2016
, “
Local Corrosion Behavior of Additive Manufactured AlSiMg Alloy Assessed by SEM and SKPFM
,”
J. Electrochem. Soc.
,
164
(
2
), p.
C27
. 10.1149/2.0461702jes
117.
Leon
,
A.
,
Shirizly
,
A.
, and
Aghion
,
E.
,
2016
, “
Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast Alloy
,”
Metals
,
6
(
7
), p.
148
. 10.3390/met6070148
118.
Bayer
,
R. G.
, and
Sirico
,
J. L.
,
1975
, “
The Influence of Surface Roughness on Wear
,”
Wear
,
35
(
2
), pp.
251
260
. 10.1016/0043-1648(75)90074-5
119.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
. 10.1016/j.jmatprotec.2012.11.011
120.
Whip
,
B.
,
Sheridan
,
L.
, and
Gockel
,
J.
,
2019
, “
The Effect of Primary Processing Parameters on Surface Roughness in Laser Powder Bed Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9
), pp.
4411
4422
. 10.1007/s00170-019-03716-z
121.
Wang
,
G.
, and
Nie
,
X.
,
2014
, “
Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy
,”
SAE 2014 World Congress & Exhibition
,
Detroit, MI
,
Apr. 8–10
.
122.
Liang
,
G.
,
Schmauder
,
S.
,
Lyu
,
M.
,
Schneider
,
Y.
,
Zhang
,
C.
, and
Han
,
Y.
,
2018
, “
An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces
,”
Materials
,
11
(
2
), p.
237
. 10.3390/ma11020237
123.
Sherrington
,
I.
, and
Smith
,
E. H.
,
1986
, “
The Significance of Surface Topography in Engineering
,”
Precis. Eng.
,
8
(
2
), pp.
79
87
. 10.1016/0141-6359(86)90090-5
124.
Shafia
,
M. A.
, and
Eyre
,
T. S.
,
1980
, “
The Effect of Surface Topography on the Wear of Steel
,”
Wear
,
61
(
1
), pp.
87
100
. 10.1016/0043-1648(80)90114-3
125.
Lesyk
,
D. A.
,
Martinez
,
S.
,
Mordyuk
,
B. N.
,
Dzhemelinskyi
,
V. V.
,
Lamikiz
,
А
, and
Prokopenko
,
G. I.
,
2020
, “
Post-processing of the Inconel 718 Alloy Parts Fabricated by Selective Laser Melting: Effects of Mechanical Surface Treatments on Surface Topography, Porosity, Hardness and Residual Stress
,”
Surf. Coat. Technol.
,
381
, p.
125136
. 10.1016/j.surfcoat.2019.125136
126.
Ma
,
C.
,
Dong
,
Y.
, and
Ye
,
C.
,
2016
, “
Improving Surface Finish of 3D-Printed Metals by Ultrasonic Nanocrystal Surface Modification
,”
Procedia CIRP
,
45
, pp.
319
322
. 10.1016/j.procir.2016.02.339
127.
Teimouri
,
R.
,
Amini
,
S.
, and
Bami
,
A. B.
,
2018
, “
Evaluation of Optimized Surface Properties and Residual Stress in Ultrasonic Assisted Ball Burnishing of AA6061-T6
,”
Measurement
,
116
, pp.
129
139
. 10.1016/j.measurement.2017.11.001
128.
Karakurt
,
I.
,
Ho
,
K. Y.
,
Ledford
,
C.
,
Gamzina
,
D.
,
Horn
,
T.
,
Luhmann
,
N. C.
, and
Lin
,
L.
,
2018
, “
Development of a Magnetically Driven Abrasive Polishing Process for Additively Manufactured Copper Structures
,”
Procedia Manuf.
,
26
, pp.
798
805
. 10.1016/j.promfg.2018.07.097
129.
Holovenko
,
Y.
,
Antonov
,
M.
,
Kollo
,
L.
, and
Hussainova
,
I.
,
2018
, “
Friction Studies of Metal Surfaces With Various 3D Printed Patterns Tested in Dry Sliding Conditions
,”
Proc. Inst. Mech. Eng., Part J
,
232
(
1
), pp.
43
53
. 10.1177/1350650117738920
130.
Hurricks
,
P. L.
,
1973
, “
Some Metallurgical Factors Controlling the Adhesive and Abrasive Wear Resistance of Steels. A Review
,”
Wear
,
26
(
3
), pp.
285
304
. 10.1016/0043-1648(73)90184-1
131.
Eyre
,
T. S.
, and
Maynard
,
D.
,
1971
, “
Surface Aspects of Unlubricated Metal-to-Metal Wear
,”
Wear
,
18
(
4
), pp.
301
310
. 10.1016/0043-1648(71)90073-1
132.
Tascioglu
,
E.
,
Karabulut
,
Y.
, and
Kaynak
,
Y.
,
2020
, “
Influence of Heat Treatment Temperature on the Microstructural, Mechanical, and Wear Behavior of 316L Stainless Steel Fabricated by Laser Powder Bed Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
, pp.
1947
1956
. 10.1007/s00170-020-04972-0
133.
Tucho
,
W. M.
,
Lysne
,
V. H.
,
Austbø
,
H.
,
Sjolyst-Kverneland
,
A.
, and
Hansen
,
V.
,
2018
, “
Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured SS316L
,”
J. Alloys Compd.
,
740
, pp.
910
925
. 10.1016/j.jallcom.2018.01.098
134.
Yen-Hung
,
T.
, and
Ji-Liang
,
D.
,
1991
, “
Wear Behaviour and Microstructure of Laser-Processed Low Carbon Steel With Chromium
,”
Wear
,
145
(
1
), pp.
43
60
. 10.1016/0043-1648(91)90238-P
135.
Karabulut
,
Y.
,
Tascioglu
,
E.
, and
Kaynak
,
Y.
,
2019
, “
Heat Treatment Temperature-Induced Microstructure, Microhardness and Wear Resistance of Inconel 718 Produced by Selective Laser Melting Additive Manufacturing
,”
Optik
,
227
, p.
163907
. 10.1016/j.ijleo.2019.163907
136.
Tocci
,
M.
,
Pola
,
A.
,
Girelli
,
L.
,
Lollio
,
F.
,
Montesano
,
L.
, and
Gelfi
,
M.
,
2019
, “
Wear and Cavitation Erosion Resistance of an AlMgSc Alloy Produced by DMLS
,”
Metals
,
9
(
3
), p.
308
. 10.3390/met9030308
137.
Mishra
,
A. K.
,
Upadhyay
,
R. K.
, and
Kumar
,
A.
,
2021
, “
Surface Wear Anisotropy in AlSi10Mg Alloy Sample Fabricated by Selective Laser Melting: Effect of Hatch Style, Scan Rotation and Use of Fresh and Recycled Powder
,”
ASME J. Tribol.
,
143
(
2
), p.
021701
. 10.1115/1.4047788
138.
Yang
,
Y.
,
Zhu
,
Y.
,
Khonsari
,
M. M.
, and
Yang
,
H.
,
2019
, “
Wear Anisotropy of Selective Laser Melted 316L Stainless Steel
,”
Wear
,
428–429
, pp.
376
386
. 10.1016/j.wear.2019.04.001
139.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
, pp.
713
721
. 10.1016/j.jallcom.2013.09.171
140.
Haden
,
C. V.
,
Zeng
,
G.
,
Carter
,
F. M.
,
Ruhl
,
C.
,
Krick
,
B. A.
, and
Harlow
,
D. G.
,
2017
, “
Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties
,”
Addit. Manuf.
,
16
, pp.
115
123
. 10.1016/j.addma.2017.05.010
141.
Mantrala
,
K. M.
,
Das
,
M.
,
Balla
,
V. K.
,
Rao
,
C. S.
, and
Kesava Rao
,
V. V. S.
,
2015
, “
Additive Manufacturing of Co-Cr-Mo Alloy: Influence of Heat Treatment on Microstructure, Tribological, and Electrochemical Properties
,”
Front. Mech. Eng.
,
1
, p.
2
. 10.3389/fmech.2015.00002
142.
Giacchi
,
J. V.
,
Fornaro
,
O.
, and
Palacio
,
H.
,
2012
, “
Microstructural Evolution During Solution Treatment of Co–Cr–Mo–C Biocompatible Alloys
,”
Mater. Charact.
,
68
, pp.
49
57
. 10.1016/j.matchar.2012.03.006
143.
Chan
,
C.-W.
,
Smith
,
G. C.
, and
Lee
,
S.
,
2018
, “
A Preliminary Study to Enhance the Tribological Performance of CoCrMo Alloy by Fibre Laser Remelting for Articular Joint Implant Applications
,”
Lubricants
,
6
(
1
), p.
24
. 10.3390/lubricants6010024
144.
Luo
,
J.
,
Wu
,
S.
,
Lu
,
Y.
,
Guo
,
S.
,
Yang
,
Y.
,
Zhao
,
C.
,
Lin
,
J.
,
Huang
,
T.
, and
Lin
,
J.
,
2018
, “
The Effect of 3 Wt.% Cu Addition on the Microstructure, Tribological Property and Corrosion Resistance of CoCrW Alloys Fabricated by Selective Laser Melting
,”
J. Mater. Sci. Mater. Med.
,
29
(
4
), p.
37
. 10.1007/s10856-018-6043-7
145.
Behera
,
M. P.
,
Dougherty
,
T.
, and
Singamneni
,
S.
,
2019
, “
Conventional and Additive Manufacturing With Metal Matrix Composites: A Perspective
,”
Procedia Manuf.
,
30
, pp.
159
166
. 10.1016/j.promfg.2019.02.023
146.
Yu
,
W. H.
,
Sing
,
S. L.
,
Chua
,
C. K.
,
Kuo
,
C. N.
, and
Tian
,
X. L.
,
2019
, “
Particle-Reinforced Metal Matrix Nanocomposites Fabricated by Selective Laser Melting: A State of the Art Review
,”
Prog. Mater. Sci.
,
104
, pp.
330
379
. 10.1016/j.pmatsci.2019.04.006
147.
Gu
,
D.
,
Wang
,
H.
,
Chang
,
F.
,
Dai
,
D.
,
Yuan
,
P.
,
Hagedorn
,
Y.-C.
, and
Meiners
,
W.
,
2014
, “
Selective Laser Melting Additive Manufacturing of TiC/AlSi10Mg Bulk-Form Nanocomposites With Tailored Microstructures and Properties
,”
Phys. Procedia
,
56
, pp.
108
116
. 10.1016/j.phpro.2014.08.153
148.
Zhou
,
Y.
,
Duan
,
L.
,
Wen
,
S.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2018
, “
Enhanced Micro-hardness and Wear Resistance of Al-15Si/TiC Fabricated by Selective Laser Melting
,”
Compos. Commun.
,
10
, pp.
64
67
. 10.1016/j.coco.2018.06.009
149.
Wu
,
L.
,
Zhao
,
Z.
,
Bai
,
P.
,
Zhao
,
W.
,
Li
,
Y.
,
Liang
,
M.
,
Liao
,
H.
,
Huo
,
P.
, and
Li
,
J.
,
2020
, “
Wear Resistance of Graphene Nano-platelets (GNPs) Reinforced AlSi10Mg Matrix Composite Prepared by SLM
,”
Appl. Surf. Sci.
,
503
, p.
144156
. 10.1016/j.apsusc.2019.144156
150.
Sidambe
,
A. T.
,
2014
, “
Biocompatibility of Advanced Manufactured Titanium Implants—A Review
,”
Materials
,
7
(
12
), pp.
8168
8188
. 10.3390/ma7128168
151.
Eylon
,
D.
,
Fujishiro
,
S.
,
Postans
,
P. J.
, and
Froes
,
F.
,
1984
, “
High-Temperature Titanium Alloys—A Review
,”
JOM
,
36
(
11
), pp.
55
62
. 10.1007/BF03338617
152.
Budinski
,
K. G.
,
1991
, “
Tribological Properties of Titanium Alloys
,”
Wear
,
151
(
2
), pp.
203
217
. 10.1016/0043-1648(91)90249-T
153.
Marquer
,
M.
,
Laheurte
,
P.
,
Faure
,
L.
, and
Philippon
,
S.
,
2020
, “
Influence of 3D-Printing on the Behaviour of Ti6Al4 V in High-Speed Friction
,”
Tribol. Int.
,
152
, p.
106557
. 10.1016/j.triboint.2020.106557
154.
Li
,
H.
,
Ramezani
,
M.
, and
Chen
,
Z. W.
,
2019
, “
Dry Sliding Wear Performance and Behaviour of Powder Bed Fusion Processed Ti–6Al–4 V Alloy
,”
Wear
,
440–441
, p.
203103
. 10.1016/j.wear.2019.203103
155.
Avila
,
J. D.
,
Alrawahi
,
Z.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2020
, “
Additively Manufactured Ti6Al4V-Si-Hydroxyapatite Composites for Articulating Surfaces of Load-Bearing Implants
,”
Addit. Manuf.
,
34
, p.
101241
. 10.1016/j.addma.2020.101241
156.
Jackson
,
B.
,
Torrens
,
R.
,
Bolzoni
,
L.
,
Yang
,
F.
,
Ross
,
N.
, and
Fry
,
M.
,
2019
, “
Wear Performance of Selective Laser Melted Ti-6Al-4V Alloy in Situ Modified With Oxygen and Boron
,”
Int. J. Mod. Phys. B
,
34
(
01n03
), p.
2040027
. 10.1142/S0217979220400275
157.
Wang
,
H.
,
Chen
,
T.
,
Cong
,
W.
, and
Liu
,
D.
,
2019
, “
Laser Cladding of Ti-Based Ceramic Coatings on Ti6Al4 V Alloy: Effects of CeO2 Nanoparticles Additive on Wear Performance
,”
Coatings
,
9
(
2
), p.
109
. 10.3390/coatings9020109
158.
Liu
,
Y. Y.
,
Yao
,
Z.
,
Zhang
,
S.
, and
Tao
,
X.
,
2019
, “
The Formation Mechanism and Wear Behavior of TiC+Ti3SiC2+Ti5Si3 Reinforced Ti6Al4 V With Network Microstructure Fabricated by Electron Beam Melting
,”
Mater. Res. Express
,
6
(
9
), p.
0965c3
. 10.1088/2053-1591/ab0b5a
159.
Amateau
,
M. F.
,
Flowers
,
R. H.
, and
Eliezer
,
Z.
,
1979
, “
Tribological Behavior of Metal Matrix Composites
,”
Wear
,
54
(
1
), pp.
175
185
. 10.1016/0043-1648(79)90055-3
160.
Prasad
,
S. V.
, and
Rohatgi
,
P. K.
,
1987
, “
Tribological Properties of Al Alloy Particle Composites
,”
JOM
,
39
(
11
), pp.
22
26
. 10.1007/BF03257531
161.
Hocheng
,
H.
,
Yen
,
S. B.
,
Ishihara
,
T.
, and
Yen
,
B. K.
,
1997
, “
Fundamental Turning Characteristics of a Tribology-Favored Graphite/Aluminum Alloy Composite Material
,”
Compos. Part Appl. Sci. Manuf.
,
28
(
9–10
), pp.
883
890
. 10.1016/S1359-835X(97)00055-9
162.
Gu
,
D.
,
Jue
,
J.
,
Dai
,
D.
,
Lin
,
K.
, and
Chen
,
W.
,
2018
, “
Effects of Dry Sliding Conditions on Wear Properties of Al-Matrix Composites Produced by Selective Laser Melting Additive Manufacturing
,”
ASME J. Tribol.
,
140
(
2
), p.
021605
. 10.1115/1.4037729
163.
Chang
,
F.
,
Gu
,
D.
,
Dai
,
D.
, and
Yuan
,
P.
,
2015
, “
Selective Laser Melting of In-situ Al4SiC4+SiC Hybrid Reinforced Al Matrix Composites: Influence of Starting SiC Particle Size
,”
Surf. Coat. Technol.
,
272
, pp.
15
24
. 10.1016/j.surfcoat.2015.04.029
164.
Dai
,
D.
,
Gu
,
D.
,
Xia
,
M.
,
Ma
,
C.
,
Chen
,
H.
,
Zhao
,
T.
,
Hong
,
C.
,
Gasser
,
A.
, and
Poprawe
,
R.
,
2018
, “
Melt Spreading Behavior, Microstructure Evolution and Wear Resistance of Selective Laser Melting Additive Manufactured AlN/AlSi10Mg Nanocomposite
,”
Surf. Coat. Technol.
,
349
, pp.
279
288
. 10.1016/j.surfcoat.2018.05.072
165.
AlMangour
,
B.
,
Baek
,
M.-S.
,
Grzesiak
,
D.
, and
Lee
,
K.-A.
,
2018
, “
Strengthening of Stainless Steel by Titanium Carbide Addition and Grain Refinement During Selective Laser Melting
,”
Mater. Sci. Eng. A
,
712
, pp.
812
818
. 10.1016/j.msea.2017.11.126
166.
Wang
,
C.
,
Zhang
,
C. H.
,
Zhang
,
S.
,
Wu
,
C. L.
,
Zhang
,
J. B.
,
Liu
,
Y.
, and
Pu
,
X. X.
,
2019
, “
Microstructure and Wear Resistance of In situ Synthesized Particle-Reinforced Novel Stainless Steel by Laser Melting Deposition
,”
Mater. Res. Express
,
6
(
8
), p.
086561
. 10.1088/2053-1591/ab1970
167.
AlMangour
,
B.
,
Grzesiak
,
D.
, and
Yang
,
J.-M.
,
2017
, “
In-situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting
,”
J. Alloys Compd.
,
706
, pp.
409
418
. 10.1016/j.jallcom.2017.01.149
168.
Li
,
J.
,
Zhao
,
Z.
,
Bai
,
P.
,
Qu
,
H.
,
Liang
,
M.
,
Liao
,
H.
,
Wu
,
L.
, and
Huo
,
P.
,
2019
, “
Tribological Behavior of TiC Particles Reinforced 316Lss Composite Fabricated Using Selective Laser Melting
,”
Materials
,
12
(
6
), p.
950
. 10.3390/ma12060950
169.
Lin
,
Z.
,
Zhang
,
X.
,
Ma
,
F.
,
Chen
,
C.
,
Dong
,
S.
,
Jiang
,
J.
, and
Yang
,
W.
,
2020
, “
A Research on the Surface Morphology, Microstructure Evolution and Wear Property of Selective Laser Melting Al2O3/P20 Composites
,”
Mater. Res. Express
,
6
(
12
), p.
1265h3
. 10.1088/2053-1591/ab691e
You do not currently have access to this content.