Abstract
In this investigation, a finite element (FE) model was developed to study the third body effects on the fretting wear of Hertzian contacts in the partial slip regime. An FE three-dimensional Hertzian point contact model operating in the presence of spherical third bodies was developed. Both first bodies and third bodies were modeled as elastic–plastic materials. The effect of the third body particles on contact stresses and stick-slip behavior was investigated. The influence of the number of third body particles and material properties including modulus of elasticity, hardening modulus, and yield strength were analyzed. Fretting loops in the presence and absence of wear particles were compared, and the relation between the number of cycles and the hardening process was evaluated. The results indicated that by increasing the number of particles in contact, more load was carried by the wear particles which affect the wear-rate of the material. In addition, due to the high plastic deformation of the debris, the wear particles deformed and took a platelet shape. Local stick-slip behavior over the third body particles was also observed. The results of having wear debris with different material properties than the first bodies indicated that harder wear particles have a higher contact pressure and lower slip at the location of particles which affects the wear-rate.