Abstract

In order to systematically investigate the tribological behavior of machine elements, several different tribometers based on simplifications of the contact situation have been developed and used successfully in the past. Many of these tribometers have become a standard testing equipment for tribologists. For the contact of radial shaft seals (RSSs), currently no such tribometer exists that can be used to characterize their behavior in a satisfying manner. In this paper, a tribologically equivalent system for RSSs is presented. The contact between the sealing lip and shaft is reproduced using a ring-shaped sample prepared from elastomer test slabs of the respective application material in contact with a conical shaft. The cone angle is chosen to properly represent the contact angles of the RSS under investigation by means of finite element (FE)-simulation of the contact pressure. The test rig allows for the on-line determination of friction, contact temperature, and wear progress. Results show good agreement of friction coefficient and wear behavior for the pairing of two typical elastomers with synthetic and mineral-based lubricants.

References

1.
Gesellschaft für Tribologie e.V. (Hg.)
, “Reibung, Schmierung und Verschleiß: Forschung und praktische Anwendungen. Tribologie – Verschleiß, Reibung - Definitionen und Begriffe.”
2.
DIN ISO 14635
,
2006
, “Gears “FZG Test Procedures” Part 1: FZG Test Method A/8,3/90 for Relative Scuffing Load-Carrying Capacity of Oils (ISO 14635-1:2000).”
3.
DIN ISO 51819
,
2016
, “Testing of Lubricants—Mechanical-Dynamic Testing in the Roller Bearing Test Apparatus FE8.”
4.
ASTM D 2783
,
2019
, “Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method).”
5.
Flitney
,
R. K.
,
2014
,
Seals and Sealing Handbook
,
Butterworth-Heinemann
,
Oxford
.
6.
Thielen
,
S.
,
Magyar
,
B.
, and
Sauer
,
B.
,
2020
, “
Thermoelastohydrodynamic Lubrication Simulation of Radial Shaft Sealing Rings
,”
ASME J. Tribol.
,
142
(
5
), p.
052301
. 10.1115/1.4045802
7.
Freudenberg Sealing Technologies
,
2018
, “Dynamic Oil Compatibility Tests for Freudenberg Radial Shaft Seals to Release the Usage in FLENDER-Gear Units Applications (Table T 7300).”
8.
SEW Eurodrive
,
2016
, “Prüfvorschrift 97 118 03 15: Statische und dynamische Prüfungen von Radialwellendichtringen (RWDR).”
9.
Jagger
,
E. T.
,
1957
, “
Rotary Shaft Seals: The Sealing Mechanism of Synthetic Rubber Seals Running at Atmospheric Pressure
,”
Proc. Inst. Mech. Eng.
,
171
(
1
), pp.
597
616
. 10.1243/PIME_PROC_1957_171_050_02
10.
Sommer
,
M.
, and
Haas
,
W.
,
2012
, “
Verlustreduzierung Fettabdichtender Radial-Wellendichtringe
,”
ISC Internationale Dichtungstagung
,
Sept. 9–13
,
Stuttgart
, pp. 603–615.
11.
Wilke
,
M.
,
Wollesen
,
V.
, and
von Estorff
,
O.
,
2012
, “
Dynamical Testing of Oil-Elastomer-Combinations With the “RWDR-Tribometer
,”
18th International Colloquium Tribology—Industrial and Automotive Lubrication
,
Esslingen
,
Jan. 10–12
.
12.
Frick
,
A.
, and
Muralidharan
,
V.
,
2018
, “
Rotational Cone Tribometer (RCT) for Approaching the Tribological Behavior of Hard and Soft Sealing Materials Under Dynamic Line Contact
,”
Macromol. Symp.
,
378
(
1
), p.
1600120
. 10.1002/masy.201600120
13.
Sommer
,
M.
,
Bauer
,
F.
, and
Haas
,
W.
,
2014
, “
Investigation of the Operational Behaviour of Grease Lubricated Radial Lip Seals Using a Modified Ring on Disc Tribometer
,”
Tribologie Schmierungstechnik
,
61
(
6
), pp.
40
46
.
14.
Burkhart
,
C.
,
Weyrich
,
D.
,
Magyar
,
B.
, and
Sauer
,
B.
,
2018
, “
Experimental Determination and Comparison of the Contact Temperature of Radial Shaft Seals and Its Derived Tribological System
,”
20th International Sealing Conference
,
Oct. 10–11
,
Stuttgart, VDMA
, pp.
197
218
.
15.
Angerhausen
,
J.
,
Woyciniuk
,
M.
,
Murrenhoff
,
H.
, and
Schmitz
,
K.
,
2019
, “
Simulation and Experimental Validation of Translational Hydraulic Seal Wear
,”
Tribol. Int.
,
2019
(
134
), pp.
296
307
. 10.1016/j.triboint.2019.01.048
16.
Karger-Kocsis
,
J.
,
Mousa
,
A.
,
Major
,
Z.
, and
Békési
,
N.
,
2008
, “
Dry Friction and Sliding Wear of EPDM Rubbers Against Steel as a Function of Carbon Black Content
,”
Wear
,
264
(
3–4
), pp.
359
367
. 10.1016/j.wear.2007.03.021
17.
Mokhtari
,
M.
, and
Schipper
,
D. J.
,
2016
, “
Existence of a Tribo-Modified Surface Layer of BR/s-SBR Elastomers Reinforced With Silica or Carbon Black
,”
Tribol. Int.
,
2016
(
96
), pp.
382
388
. 10.1016/j.triboint.2014.09.021
18.
Mofidi
,
M.
,
2009
, “
Tribology of Elastomeric Seal Materials
,” PhD thesis,
Luleå University of Technology
,
Luleå
.
19.
xue Shen
,
M.
,
Li
,
B.
, and
Zhang
,
J.
,
2020
, “
Effect of Particle Size on Tribological Properties of Rubber/Steel Seal Pairs Under Contaminated Water Lubrication Conditions
,”
Tribol. Lett.
,
68
(
1
), p.
40
. 10.1007/s11249-020-1285-1
20.
Burkhart
,
C.
,
Emrich
,
S.
,
Kopnarski
,
M.
, and
Sauer
,
B.
,
2020
, “
Excessive Shaft Wear Due to Radial Shaft Seals in Lubricated Environment. Part II: Measures Against Excessive Shaft Wear
,”
Wear
,
2020
(
462–463
), pp.
203483
. 10.1016/j.wear.2020.203483
21.
Horve
,
L.
,
1991
, “The Correlation of Rotary Shaft Radial Lip Seal Service Reliability and Pumping Ability to Wear Track Roughness and Microasperity Formation.” SAE Technical Papers.
22.
DIN 3761
,
1984
, “Rotary Shaft Lip Type Seals for Automobiles.” Withdrawn.
23.
DIN 3760
, “OTHERINFORadial-Wellendichtringe.”
24.
Burkhart
,
C.
,
Emrich
,
S.
,
Kopnarski
,
M.
, and
Sauer
,
B.
,
2020
, “
Excessive Shaft Wear Due to Radial Shaft Seals in Lubricated Environment. Part I: Analysis and Mechanisms
,”
Wear
,
2020
(
460–461
), pp.
203419
. 10.1016/j.wear.2020.203419
25.
Thielen
,
S.
,
Magyar
,
B.
,
Sauer
,
B.
,
Schneider
,
F.
,
Mayer
,
P.
,
Kirsch
,
B.
,
Müller
,
R.
, and
Aurich
,
J. C.
,
2017
, “
Functional Investigation of Zero Lead Radial Shaft Seal Counter-Surfaces Turned With a Special Method
,”
Tribol. Int.
,
2017
(
118
), pp.
442
450
. 10.1016/j.triboint.2017.02.002
26.
Burkhart
,
C.
,
Peter
,
K.
,
Thielen
,
S.
, and
Sauer
,
B.
,
2020
, “
Online Determination of Reverse Pumping Values of Radial Shaft Seals and Their Tribologically Equivalent System
,”
22nd International Colloquium Tribology: Industrial and Automotive Lubrication
,
Esslingen
,
Jan. 28–30
,
Technische Akademie Esslingen (TAE)
, pp. 89–90.
27.
Frölich
,
D.
,
Jennewein
,
B.
, and
Sauer
,
B.
,
2013
, “
A Comprehensive Model for the Simultaneous Analysis of Temperature, Friction and Wear in Radial Shaft Seal Rings
,”
5th World Tribology Congress (WTC)
,
Sept. 9–13
,
Torino
.
28.
Frölich
,
D.
,
Magyar
,
B.
, and
Sauer
,
B.
,
2014
, “
A Comprehensive Model of Wear, Friction and Contact Temperature in Radial Shaft Seals
,”
Wear
,
2014
(
311
), pp.
71
80
. 10.1016/j.wear.2013.12.030
29.
Frölich
,
D.
,
2016
, “
Strategien Und Modelle Zur Simulation Des Betriebsverhaltens Von Radial-Wellendichtringen
,” PhD thesis,
Technische Universität Kaiserslautern
,
Kaiserslautern
.
30.
Jennewein
,
B.
,
2011
, “Wechselwirkungsverhalten der Systemparameter im RWDR-System. Forschungsvorhaben 574 II.” Technical Report IGF-Nr.: 17449 N, Forschungsvereinigung für Antriebstechnik e.V. (FVA), Forschungsstelle MEGT TU Kaiserslautern, IGF-Nr.: 15702 N.
31.
Frölich
,
D.
,
Fodor
,
B.
, and
Sauer
,
B.
,
2011
, “Untersuchung des Verschleißverhaltens von Elastomeren an Radialwellendichtring und Ersatzsystems”. 52. Tribologie-Fachtagung (GfT) 2011, Gesellschaft für Tribologie, e.V. GfT,
Göttingen
, pp. 55/1–55/18.
32.
Jennewein
,
B.
,
2016
, “
Integrierter Berechnungsansatz Zur Prognose Des Dynamischen Betriebsverhaltens Von Radialwellendichtringen
,” PhD thesis,
Technische Universität Kaiserslautern
,
Kaiserslautern
.
33.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
. 10.1063/1.1721448
34.
Engelke
,
T.
,
2011
, “
Einfluss Der Elastomer-Schmierstoff-Kombination Auf Das Betriebsverhalten Von Radialwellendichtringen
,” PhD thesis,
Gottfried Wilhelm Leibniz Universität Hannover
,
Hanover
.
35.
Magyar
,
B.
, and
Frölich
,
D. S. B.
,
2013
, “Temperaturberechnung Im RWDR-Dichtkontakt,” 54. Tribologie Fachtagung (GfT) 2012, Göttingen, pp. 7/1–7/9.
36.
Burkhart
,
C.
,
Weyrich
,
D.
,
Heimes
,
J.
, and
Sauer
,
B.
,
2018
, “
Temper-aturverhalten eines Dichtsystems Vollvalidiertes thermisches Netzwerk eines tribologischen Ersatzsystems f¨ur Radial-wellendichtringe
,”
Dichtungstechnik Jahrbuch 2019. ISGATEC, ch
,
2019
(
1
), pp.
221
235
.
37.
Burkhart
,
C.
,
Weyrich
,
D.
, and
Sauer
,
B.
,
2019
, Jahrbuch 2020 Dichten.Kleben. Polymer. ISGATEC, ch. Optimierung eines tribologisches Ersatzsystems Einsatz eines ganzheitlichen, validierten FE-Simulationsmodells, pp. 172–192.
38.
Kammüller
,
M.
, and
Haas
,
W.
,
1986
, “
Physikalische Ursachen Der Dichtwirkung Von Radial-Wellendichtringen
,”
ATZ Auto. Z.
,
1986
(
88
), pp.
39
45
.
39.
Guo
,
F.
,
Jia
,
X.
,
Longke
,
W.
,
Salant
,
R. F.
, and
Wang
,
Y.
,
2014
, “
The Effect of Wear on the Performance of a Rotary Lip Seal
,”
ASME J. Tribol.
,
136
(
4
), p.
0417031
.
40.
Siebert
,
H.
, and
Prem
,
E.
,
2010
, “
The Influence of Gear Oils on the Sealing- and Friction Behaviour of Radial Shaft Seals
,”
17th International Colloquium Tribology: Industrial and Automotive Lubrication
,
Esslingen
,
Technische Akademie Esslingen (TAE)
, pp. 422–430.
You do not currently have access to this content.