Abstract
More than 300,000 total hip replacement surgeries are performed in the United States each year to treat degenerative joint diseases that cause pain and disability. The statistical survivorship of these implants declines significantly after 15–25 years of use because wear debris causes inflammation, osteolysis, and mechanical instability of the implant. This limited longevity has unacceptable consequences, such as revision surgery to replace a worn implant, or surgery postponement, which leaves the patient in pain. Innovations such as highly cross-linked polyethylene and new materials and coatings for the femoral head have reduced wear significantly, but longevity remains an imminent problem. Another method to reduce wear is to add a patterned microtexture composed of micro-sized texture features to the smooth bearing surfaces. We critically review the literature on textured orthopedic biomaterial surfaces in the context of prosthetic hip implants. We discuss the different functions of texture features by highlighting experimental and simulated results documented by research groups active in this area. We also discuss and compare different manufacturing techniques to create texture features on orthopedic biomaterial surfaces and emphasize the key difficulties that must be overcome to produce textured prosthetic hip implants.