Abstract

Current work focuses on studying the tribological response of the severely deformed surface of AISI 316L steel specimens using a ball-on-disk tribometer. Specimens are investigated under dry and lubricated (using engine-oil) conditions using different loads and sliding velocities. Surface mechanical attrition treatment (SMAT) using 6 mm diameter balls improves the surface hardness of steel by 56%. The wear performance of the severely deformed surface is significantly better than the non-treated steel under the investigated wear conditions. Under the lubricated condition, an improvement in the tribological response of attrition treated specimens is substantially greater than in the dry sliding condition. Steel surface collided with higher velocity balls shows the maximum reduction in wear-rate, which is about 44% and 88% under dry and lubricated conditions, respectively. Under the lubricated condition, the steel surface treated with a lower velocity of the colliding balls shows about a 97% reduction in wear-rate. The lowest specific wear-rates of the attrition treated specimens are 2.32 × 10−4 and 0.11 × 10−6 mm3/(N m) under dry and lubricated conditions, respectively. The contact angle of the lubricating engine-oil on the attrition treated surface (32.65–41.75 deg) is higher than the non-treated surface (19.2 deg). The coefficient of friction (COF) decreases with an increase in the contact angle on the treated surface. COF of the attrition treated specimen ranges from 0.04 to 0.07 under the lubricated sliding condition.

References

References
1.
Li
,
J. S.
,
Gao
,
W. D.
,
Cao
,
Y.
,
Huang
,
Z. W.
,
Gao
,
B.
,
Mao
,
Q. Z.
, and
Li
,
Y. S.
,
2018
, “
Microstructures and Mechanical Properties of a Gradient Nanostructured 316L Stainless Steel Processed by Rotationally Accelerated Shot Peening
,”
Adv. Eng. Mater.
,
20
(
10
), p.
1800402
. 10.1002/adem.201800402
2.
Nafar Dehsorkhi
,
R.
,
Sabooni
,
S.
,
Karimzadeh
,
F.
,
Rezaeian
,
A.
, and
Enayati
,
M. H.
,
2014
, “
The Effect of Grain Size and Martensitic Transformation on the Wear Behavior of AISI 304L Stainless Steel
,”
Mater. Des.
,
64
, pp.
56
62
. 10.1016/j.matdes.2014.07.022
3.
Fellah
,
M.
,
Labaïz
,
M.
,
Assala
,
O.
,
Iost
,
A.
, and
Dekhil
,
L.
,
2013
, “
Tribological Behavior of AISI 316L Stainless Steel for Biomedical Applications
,”
Tribol. Mater. Surf. Interfaces
,
7
(
3
), pp.
135
149
. 10.1179/1751584X13Y.0000000032
4.
Ma
,
G.-Z.
,
Xu
,
B.-S.
,
Wang
,
H.-D.
,
Si
,
H.-J.
, and
Yang
,
D.-X.
,
2011
, “
Effect of Surface Nano-Crystallization on the Tribological Properties of 1Cr18Ni9Ti Stainless Steel
,”
Mater. Lett.
,
65
(
9
), pp.
1268
1271
. 10.1016/j.matlet.2011.01.041
5.
Qin
,
W.
,
Li
,
J.
,
Liu
,
Y.
,
Yue
,
W.
,
Wang
,
C.
,
Mao
,
Q.
, and
Li
,
Y.
,
2019
, “
Effect of Rolling Strain on the Mechanical and Tribological Properties of 316 L Stainless Steel
,”
ASME J. Tribol.
,
141
(
2
), p.
021606
. 10.1115/1.4041214
6.
Gatey
,
A.
,
Hosmani
,
S.
, and
Singh
,
R.
,
2016
, “
Surface Mechanical Attrition Treated AISI 304L Steel: Role of Process Parameters
,”
Surf. Eng.
,
32
(
1
), pp.
69
78
. 10.1179/1743294415Y.0000000056
7.
Singh
,
D.
,
Gatey
,
A. M.
,
Devan
,
R. S.
,
Antunes
,
V.
,
Alvarez
,
F.
,
Figueroa
,
C. A.
,
Joshi
,
A. A.
, and
Hosmani
,
S. S.
,
2019
, “
Surface Treatment Response of AISI 2205 and AISI 304L Steels: SMAT and Plasma-Nitriding
,”
Surf. Eng.
,
35
(
3
), pp.
205
215
. 10.1080/02670844.2018.1516372
8.
Sun
,
Y.
,
2013
, “
Sliding Wear Behavior of Surface Mechanical Attrition Treated AISI 304 Stainless Steel
,”
Tribol. Int.
,
57
, pp.
67
75
. 10.1016/j.triboint.2012.07.015
9.
Zhao
,
X.
,
Nie
,
D.
,
Xu
,
D.
,
Liu
,
Y.
, and
Hu
,
C.
,
2019
, “
Effect of Gradient Nanostructures on Tribological Properties of 316L Stainless Steel With High Energy Ion Implantation Tungsten Carbide
,”
Tribol. Trans.
,
62
(
2
), pp.
189
197
. 10.1080/10402004.2018.1508797
10.
Wang
,
H.
,
Shi
,
Z.
,
Yaer
,
X.
,
Tong
,
Z.
, and
Du
,
Z.
,
2019
, “
High Mechanical Performance of AISI 304 Stainless Steel Plate by Surface Nano-Crystallization and Microstructural Evolution During the Explosive Impact Treatment
,”
J. Mater. Res. Technol.
,
8
(
1
), pp.
609
614
. 10.1016/j.jmrt.2018.05.010
11.
Devaraju
,
A.
,
Elayaperumal
,
A.
,
Alphonsa
,
J.
,
Kailas
,
S. V.
, and
Venugopal
,
S.
,
2012
, “
Microstructure and Dry Sliding Wear Resistance Evaluation of Plasma Nitrided Austenitic Stainless Steel Type AISI 316LN Against Different Sliders
,”
Surf. Coat. Technol.
,
207
, pp.
406
412
. 10.1016/j.surfcoat.2012.07.031
12.
Hashemi
,
B.
,
Rezaee Yazdi
,
M. R.
, and
Azar
,
V.
,
2011
, “
The Wear and Corrosion Resistance of Shot-Peened–Nitrided 316L Austenitic Stainless Steel
,”
Mater. Des.
,
32
(
6
), pp.
3287
3292
. 10.1016/j.matdes.2011.02.037
13.
Gatey
,
A. M.
,
Hosmani
,
S. S.
,
Singh
,
R.
, and
Suwas
,
S.
,
2013
, “
Surface Engineering of Stainless Steels: Role of Surface Mechanical Attrition Treatment (SMAT)
,”
Adv. Mat. Res.
,
794
, pp.
238
247
. 10.4028/www.scientific.net/amr.794.238
14.
Lin
,
Y.
,
Lu
,
J.
,
Wang
,
L.
,
Xu
,
T.
, and
Xue
,
Q.
,
2006
, “
Surface Nanocrystallization by Surface Mechanical Attrition Treatment and Its Effect on Structure and Properties of Plasma Nitrided AISI 321 Stainless Steel
,”
Acta Mater.
,
54
(
20
), pp.
5599
5605
. 10.1016/j.actamat.2006.08.014
15.
Li
,
Y.-F.
,
Chen
,
C.
,
Ranabhat
,
J.
, and
Shen
,
Y.-F.
,
2017
, “
Formation Mechanism and Mechanical Properties of Surface Nano-Crystallized Ti–6Al–4V Alloy Processed by Surface Mechanical Attrition Treatment
,”
Rare Met.
, pp.
1
10
. 10.1007/s12598-017-0988-4
16.
Anand Kumar
,
S.
,
Ganesh Sundara Raman
,
S.
,
Sankara Narayanan
,
T. S. N.
, and
Gnanamoorthy
,
R.
,
2012
, “
Fretting Wear Behavior of Surface Mechanical Attrition Treated Alloy 718
,”
Surf. Coat. Technol.
,
206
(
21
), pp.
4425
4432
. 10.1016/j.surfcoat.2012.04.085
17.
Zhang
,
Y.
,
Han
,
Z.
,
Wang
,
K.
, and
Lu
,
K.
,
2006
, “
Friction and Wear Behavior of the Nanocrystalline Surface Layer of Pure Copper
,”
Wear
,
260
(
9–10
), pp.
942
948
. 10.1016/j.wear.2005.06.010
18.
Alikhani Chamgordani
,
S.
,
Miresmaeili
,
R.
, and
Aliofkhazraei
,
M.
,
2018
, “
Improvement in Tribological Behavior of Commercial Pure Titanium (CP-Ti) by Surface Mechanical Attrition Treatment (SMAT)
,”
Tribol. Int.
,
119
, pp.
744
752
. 10.1016/j.triboint.2017.11.044
19.
Liu
,
Y.
,
Jin
,
B.
,
Li
,
D.-J.
,
Zeng
,
X.-Q.
, and
Lu
,
J.
,
2015
, “
Wear Behavior of Nanocrystalline Structured Magnesium Alloy Induced by Surface Mechanical Attrition Treatment
,”
Surf. Coat. Technol.
,
261
, pp.
219
226
. 10.1016/j.surfcoat.2014.11.026
20.
Anand Kumar
,
S.
,
Ganesh Sundara Raman
,
S.
,
Sankara Narayanan
,
T. S. N.
, and
Gnanamoorthy
,
R.
,
2013
, “
Influence of Counter Body Material on Fretting Wear Behavior of Surface Mechanical Attrition Treated Ti–6Al–4V
,”
Tribol. Int.
,
57
, pp.
107
114
. 10.1016/j.triboint.2012.07.021
21.
Arifvianto
,
B.
,
Suyitno
,
Mahardika
,
M.
,
Dewo
,
P.
,
Iswanto
,
P. T.
, and
Salim
,
U. A.
,
2011
, “
Effect of Surface Mechanical Attrition Treatment (SMAT) on Micro-Hardness, Surface Roughness and Wettability of AISI 316L
,”
Mater. Chem. Phys.
,
125
(
3
), pp.
418
426
. 10.1016/j.matchemphys.2010.10.038
22.
Yang
,
X. H.
,
Dui
,
W. Z.
, and
Liu
,
G.
,
2007
, “
Mechanical Properties of 316L Stainless Steel With Nanostructure Surface Layer Induced by Surface Mechanical Attrition Treatment
,”
Key Eng. Mater.
,
353–358
, pp.
1810
1813
. 10.4028/www.scientific.net/KEM.353-358.1810
23.
Sun
,
Y.
, and
Bailey
,
R.
,
2014
, “
Improvement in Tribocorrosion Behavior of 304 Stainless Steel by Surface Mechanical Attrition Treatment
,”
Surf. Coat. Technol.
,
253
, pp.
284
291
. 10.1016/j.surfcoat.2014.05.057
24.
Sun
,
Y.
,
Bailey
,
R.
, and
Moroz
,
A.
,
2019
, “
Surface Finish and Properties Enhancement of Selective Laser Melted 316L Stainless Steel by Surface Mechanical Attrition Treatment
,”
Surf. Coat. Technol.
,
378
, p.
124993
. 10.1016/j.surfcoat.2019.124993
25.
Fargas
,
G.
,
Roa
,
J. J.
, and
Mateo
,
A.
,
2016
, “
Influence of Pre-Existing Martensite on the Wear Resistance of Metastable Austenitic Stainless Steels
,”
Wear
,
364–365
, pp.
40
47
. 10.1016/j.wear.2016.06.018
26.
Zandrahimi
,
M.
,
Bateni
,
M. R.
,
Poladi
,
A.
, and
Szpunar
,
J. A.
,
2007
, “
The Formation of Martensite During Wear of AISI 304 Stainless Steel
,”
Wear
,
263
(
1–6
), pp.
674
678
. 10.1016/j.wear.2007.01.107
27.
Joshi
,
M. D.
,
Kumar
,
V.
,
Litoria
,
A. K.
,
Singh
,
D.
, and
Hosmani
,
S. S.
,
2020
, “Effect of Surface Mechanical Attrition Treatment on Tribological Behavior of AISI 2205 Steel”,
Materials Today: Proceedings
, (in press). https://dx.doi.org/10.1016/j.matpr.2020.02.487
28.
Rojacz
,
H.
,
Premauer
,
M.
, and
Varga
,
M.
,
2018
, “
Alloying and Strain Hardening Effects in Abrasive Contacts on Iron-Based Alloys
,”
Wear
,
410
, pp.
173
180
. 10.1016/j.wear.2018.05.022
29.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
. 10.1016/0043-1648(73)90125-7
30.
Khalladi
,
A.
, and
Elleuch
,
K.
,
2017
, “
Tribological Behavior of Wheel–Rail Contact Under Different Contaminants Using Pin-on-Disk Methodology
,”
ASME J. Tribol.
,
139
(
1
), p.
011102
. 10.1115/1.4033051
31.
Liang
,
G.
,
Schmauder
,
S.
,
Lyu
,
M.
,
Schneider
,
Y.
,
Zhang
,
C.
, and
Han
,
Y.
,
2018
, “
An Investigation of the Influence of Initial Roughness on the Friction and Wear Behavior of Ground Surfaces
,”
Materials
,
11
(
2
), p.
237
. 10.3390/ma11020237
32.
Das
,
A.
,
2016
, “
Contribution of Deformation-Induced Martensite to Fracture Appearance of Austenitic Stainless Steel
,”
Mater. Sci. Technol.
,
32
(
13
), pp.
1366
1373
. 10.1080/02670836.2015.1126048
33.
Farias
,
M.
,
Souza
,
R. M. D.
,
Sinatora
,
A.
, and
Tanaka
,
D. K.
,
2007
, “
The Influence of Applied Load, Sliding Velocity and Martensitic Transformation on the Unlubricated Sliding Wear of Austenitic Stainless Steels
,”
Wear
,
263
(
1–6
), pp.
773
781
. 10.1016/j.wear.2006.12.017
34.
Gąsiorek
,
J.
,
Szczurek
,
A.
,
Babiarczuk
,
B.
,
Kaleta
,
J.
,
Jones
,
W.
, and
Krzak
,
J.
,
2018
, “
Functionalizable Sol-Gel Silica Coatings for Corrosion Mitigation
,”
Materials
,
11
(
2
), p.
197
. 10.3390/ma11020197
35.
Wang
,
K.
,
Wang
,
J.
, and
Hu
,
W.
,
2015
, “
Evaluation of Temperature Effect on the Corrosion Process of 304 Stainless Steel in High-Temperature Water With Electrochemical Noise
,”
Mater. Des.
,
82
, pp.
155
163
. 10.1016/j.matdes.2015.05.044
36.
Bai
,
L.
, and
Bai
,
S.
,
2014
, “
Frictional Performance of a Textured Surface With Elliptical Dimples: Geometric and Distribution Effects
,”
Tribol. Trans.
,
57
(
6
), pp.
1122
1128
. 10.1080/10402004.2014.939317
37.
Gnilitskyi
,
I.
,
Rotundo
,
F.
,
Martini
,
C.
,
Pavlov
,
I.
,
Ilday
,
S.
,
Vovk
,
E.
,
Ilday
,
, and
Orazi
,
L.
,
2016
, “
Nano Patterning of AISI 316L Stainless Steel With Nonlinear Laser Lithography: Sliding Under Dry and Oil-Lubricated Conditions
,”
Tribol. Int.
,
99
, pp.
67
76
. 10.1016/j.triboint.2016.03.011
38.
Wang
,
P.
, and
Han
,
Z.
,
2018
, “
Friction and Wear Behaviors of a Gradient Nano-Grained AISI 316L Stainless Steel Under Dry and Oil-Lubricated Conditions
,”
J. Mater. Sci. Techno.
,
34
(
10
), pp.
1835
1842
. 10.1016/j.jmst.2018.01.013
39.
Borruto
,
A.
,
Crivellone
,
G.
, and
Marani
,
F.
,
1998
, “
Influence of Surface Wettability on Friction and Wear Tests
,”
Wear
,
222
(
1
), pp.
57
65
. 10.1016/S0043-1648(98)00256-7
40.
Bizi-Bandoki
,
P.
,
Benayoun
,
S.
,
Valette
,
S.
,
Beaugiraud
,
B.
, and
Audouard
,
E.
,
2011
, “
Modifications of Roughness and Wettability Properties of Metals Induced by Femtosecond Laser Treatment
,”
Appl. Surf. Sci.
,
257
(
12
), pp.
5213
5218
. 10.1016/j.apsusc.2010.12.089
41.
Kubiak
,
K.
,
Wilson
,
M.
,
Mathia
,
T.
, and
Carval
,
P.
,
2011
, “
Wettability Versus Roughness of Engineering Surfaces
,”
Wear
,
271
(
3–4
), pp.
523
528
. 10.1016/j.wear.2010.03.029
42.
Yu
,
D. I.
,
Doh
,
S. W.
,
Kwak
,
H. J.
,
Kang
,
H. C.
,
Ahn
,
H. S.
,
Park
,
H. S.
,
Kiyofumi
,
M.
, and
Kim
,
M. H.
,
2015
, “
Wetting State on Hydrophilic and Hydrophobic Micro-Textured Surfaces: Thermodynamic Analysis and X-ray Visualization
,”
Appl. Phys. Lett.
,
106
(
17
), p.
171602
. 10.1063/1.4919136
43.
Kalin
,
M.
,
Velkavrh
,
I.
, and
Vižintin
,
J.
,
2009
, “
The Stribeck Curve and Lubrication Design for Non-Fully Wetted Surfaces
,”
Wear
,
267
(
5–8
), pp.
1232
1240
. 10.1016/j.wear.2008.12.072
44.
Kalin
,
M.
, and
Polajnar
,
M.
,
2013
, “
The Effect of Wetting and Surface Energy on the Friction and Slip in Oil-Lubricated Contacts
,”
Tribol. Lett.
,
52
(
2
), pp.
185
194
. 10.1007/s11249-013-0194-y
You do not currently have access to this content.