Abstract

Additive manufacturing (AM) has witnessed substantial growth in recent years due to its excellent manufacturing capabilities and innovative production methodologies. However, the mechanical suitability aspect in terms of material wear has not received much attention yet and needs rigorous assessment. This study investigates the wear anisotropy in an AlSi10Mg alloy sample fabricated by selective laser melting (SLM) technique. Different scanning strategies encompassing the island and the continuous scanning patterns were used in sample manufacturing. The effects of the scanning vector orientation, design pattern, and the island pattern size on the mechanical wear and wear anisotropy have been analyzed in detail. The study also focused upon a comparative investigation of the wear properties at the top and the side surfaces to understand the wear anisotropy in different directions. The samples are fabricated both by the fresh and the recycled powder and the role of powder state is described. The ball-on-disk test is performed to simulate the similar contact applications for marine/automotive components such as bearings. Bearing steel balls are used as a standard sliding counterpart material to investigate the wear properties. The wear microstructure is analyzed by scanning electron microscopy. Overall, the island strategy with 2 mm hatch style and 45 deg scan rotation have achieved better wear resistance and friction coefficient compared with the continuous hatch style. The wear behavior is found to be anisotropic. The Raman spectra validate the presence of silicon and carbon particles on the wear track, which have a significant effect on the tribological properties. The type of particles present in the sliding zone characterizes different wear stages. Wear mechanism is described by considering four parameters, namely, scan pattern, scan vector rotation, type of powder, and the wear measurement direction. Results show that the surface wear rate of samples made by the fresh powder is lower than the recycled powder. However, samples of the recycled powder have friction modifier characteristics. The best wear rate and friction coefficient values are obtained with the island strategy (2 mm hatch, 45 deg scan rotation) in the side plane and are 3.76 × 10−6 mm3/N m, 0.0781, respectively.

References

References
1.
Herzog
,
D.
,
Vanessa
,
S.
,
Eric
,
W.
, and
Claus
,
E.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
, pp.
371
392
. 10.1016/j.actamat.2016.07.019
2.
Mitchell
,
A.
,
Lafont
,
U.
,
Hołyńska
,
M.
, and
Semprimoschnig
,
C.
,
2018
, “
Additive Manufacturing—A Review of 4D Printing and Future Applications
,”
Addit. Manuf.
,
24
, pp.
606
626
.
3.
Ngo
,
T.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B
,
143
, pp.
172
196
. 10.1016/j.compositesb.2018.02.012
4.
Aggarwal
,
A.
,
Patel
,
S.
, and
Kumar
,
A.
,
2019
, “
Selective Laser Melting of 316L Stainless Steel: Physics of Melting Mode Transition and Its Influence on Microstructural and Mechanical Behavior
,”
JOM
,
71
(
3
), pp.
1105
1116
. 10.1007/s11837-018-3271-8
5.
Roopavath
,
U.
,
Malferrari
,
S.
,
Van Haver
,
A.
,
Verstreken
,
F.
,
Rath
,
S.
, and
Kalaskar
,
D.
,
2019
, “
Optimization of Extrusion Based Ceramic 3D Printing Process for Complex Bony Designs
,”
Mater. Des.
,
162
, pp.
263
270
. 10.1016/j.matdes.2018.11.054
6.
Mishra
,
A.
,
Aggarwal
,
A.
,
Kumar
,
A.
, and
Sinha
,
N.
,
2018
, “
Identification of a Suitable Volumetric Heat Source for Modelling of Selective Laser Melting of Ti6Al4V Powder Using Numerical and Experimental Validation Approach
,”
Int. J. Adv. Manuf. Technol.
,
99
(
9–12
), pp.
2257
2270
. 10.1007/s00170-018-2631-4
7.
Mishra
,
A.
, and
Kumar
,
A.
,
2019
, “
Numerical and Experimental Analysis of the Effect of Volumetric Energy Absorption in Powder Layer on Thermal-Fluidic Transport in Selective Laser Melting of Ti6Al4V
,”
Opt. Laser Technol.
,
111
, pp.
227
239
. 10.1016/j.optlastec.2018.09.054
8.
Bandyopadhyay
,
A.
, and
Traxel
,
K.
,
2018
, “
Invited Review Article: Metal-Additive Manufacturing—Modeling Strategies for Application-Optimized Designs
,”
Addit. Manuf.
,
22
, pp.
758
774
.
9.
Günther
,
J.
,
Brenne
,
F.
,
Droste
,
M.
,
Wendler
,
M.
,
Volkova
,
O.
,
Biermann
,
H.
, and
Niendorf
,
T.
,
2018
, “
Design of Novel Materials for Additive Manufacturing—Isotropic Microstructure and High Defect Tolerance
,”
Sci. Rep.
,
8
(
1
), p.
1298
. 10.1038/s41598-018-19376-0
10.
Li
,
W.
,
Li
,
S.
,
Liu
,
J.
,
Zhang
,
A.
,
Zhou
,
Y.
,
Wei
,
Q.
,
Yan
,
C.
, and
Shi
,
Y.
,
2016
, “
Effect of Heat Treatment on AlSi10Mg Alloy Fabricated by Selective Laser Melting: Microstructure Evolution, Mechanical Properties and Fracture Mechanism
,”
Mater. Sci. Eng. A
,
663
, pp.
116
125
. 10.1016/j.msea.2016.03.088
11.
Liu
,
X.
,
Zhao
,
C.
,
Zhou
,
X.
,
Shen
,
Z.
, and
Liu
,
W.
,
2019
, “
Microstructure of Selective Laser Melted AlSi10Mg Alloy
,”
Mater. Des.
,
168
, p.
107677
. 10.1016/j.matdes.2019.107677
12.
Olakanmi
,
E.
,
Cochrane
,
R.
, and
Dalgarno
,
K.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
. 10.1016/j.pmatsci.2015.03.002
13.
Yang
,
Y.
,
Zhu
,
Y.
,
Khonsari
,
M.
, and
Yang
,
H.
,
2019
, “
Wear Anisotropy of Selective Laser Melted 316L Stainless Steel
,”
Wear
,
428–429
, pp.
376
386
. 10.1016/j.wear.2019.04.001
14.
Zhu
,
Y.
,
Zou
,
J.
,
Chen
,
X.
, and
Yang
,
H.
,
2016
, “
Tribology of Selective Laser Melting Processed Parts: Stainless Steel 316 L Under Lubricated Conditions
,”
Wear
,
350–351
, pp.
46
55
. 10.1016/j.wear.2016.01.004
15.
Prashanth
,
K.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2017
, “
Defining the Tensile Properties of Al-12Si Parts Produced by Selective Laser Melting
,”
Acta Mater.
,
126
, pp.
25
35
. 10.1016/j.actamat.2016.12.044
16.
Prashanth
,
K.
,
Scudino
,
S.
,
Chaubey
,
A.
,
Löber
,
L.
,
Wang
,
P.
,
Attar
,
H.
,
Schimansky
,
F.
,
Pyczak
,
F.
, and
Eckert
,
J.
,
2015
, “
Processing of Al–12Si–TNM Composites by Selective Laser Melting and Evaluation of Compressive and Wear Properties
,”
J. Mater. Res.
,
31
(
1
), pp.
55
65
. 10.1557/jmr.2015.326
17.
Buchbinder
,
D.
,
Meiners
,
W.
,
Wissenbach
,
K.
,
Müller-Lohmeier
,
K.
, and
Brandl
,
E.
,
2008
, “Rapid Manufacturing of Aluminum Parts for Serial Production via Selective Laser Melting (SLM),”
Aluminum Alloys
,
J.
Hirsch
, ed., vol.
2
, pp.
2394
2400
.
18.
Buchbinder
,
D.
,
Schleifenbaum
,
H.
,
Heidrich
,
S.
,
Meiners
,
W.
, and
Bültmann
,
J.
,
2011
, “
High Power Selective Laser Melting (HP SLM) of Aluminum Parts
,”
Phys. Procedia
,
12
(Part A), pp.
271
278
. 10.1016/j.phpro.2011.03.035
19.
Mercelis
,
P.
, and
Kruth
,
J.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
. 10.1108/13552540610707013
20.
Huttunen-Saarivirta
,
E.
,
Heino
,
V.
,
Vaajoki
,
A.
,
Hakala
,
T.
, and
Ronkainen
,
H.
,
2019
, “
Wear of Additively Manufactured Tool Steel in Contact With Aluminium Alloy
,”
Wear
,
432–433
, p.
202934
. 10.1016/j.wear.2019.202934
21.
Tian
,
C.
,
Li
,
X.
,
Zhang
,
S.
,
Guo
,
G.
,
Wang
,
L.
, and
Rong
,
Y.
,
2018
, “
Study on Design and Performance of Metal-Bonded Diamond Grinding Wheels Fabricated by Selective Laser Melting (SLM)
,”
Mater. Des.
,
156
, pp.
52
61
. 10.1016/j.matdes.2018.06.029
22.
Zhu
,
H.
,
Fuh
,
J.
, and
Lu
,
L.
,
2007
, “
The Influence of Powder Apparent Density on the Density in Direct Laser-Sintered Metallic Parts
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
294
298
. 10.1016/j.ijmachtools.2006.03.019
23.
Fousová
,
M.
,
Dvorský
,
D.
,
Michalcová
,
A.
, and
Vojtěch
,
D.
,
2018
, “
Changes in the Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg Alloy After Exposure to Elevated Temperatures
,”
Mater. Charact.
,
137
, pp.
119
126
. 10.1016/j.matchar.2018.01.028
24.
Upadhyay
,
R.
, and
Kumar
,
A.
,
2019
, “
Epoxy-graphene-MoS2 Composites With Improved Tribological Behavior Under Dry Sliding Contact
,”
Tribol. Int.
,
130
, pp.
106
118
. 10.1016/j.triboint.2018.09.016
25.
Fathi
,
P.
,
Rafieazad
,
M.
,
Duan
,
X.
,
Mohammadi
,
M.
, and
Nasiri
,
A.
,
2019
, “
On Microstructure and Corrosion Behaviour of AlSi10Mg Alloy With Low Surface Roughness Fabricated by Direct Metal Laser Sintering
,”
Corros. Sci.
,
157
, pp.
126
145
. 10.1016/j.corsci.2019.05.032
26.
Maamoun
,
A.
,
Elbestawi
,
M.
,
Dosbaeva
,
G.
, and
Veldhuis
,
S.
,
2018
, “
Thermal Post-Processing of AlSi10Mg Parts Produced by Selective Laser Melting Using Recycled Powder
,”
Addit. Manuf.
,
21
, pp.
234
247
.
27.
Bendijk
,
A.
,
Delhez
,
R.
,
Katgerman
,
L.
,
De Keijser
,
T.
,
Mittemeijer
,
E.
, and
Van Der Pers
,
N.
,
1980
, “
Characterization of Al-Si-Alloys Rapidly Quenched From the Melt
,”
J. Mater. Sci.
,
15
(
11
), pp.
2803
2810
. 10.1007/BF00550549
28.
Milligan
,
J.
,
Vintila
,
R.
, and
Brochu
,
M.
,
2009
, “
Nanocrystalline Eutectic Al–Si Alloy Produced by Cryomilling
,”
Mater. Sci. Eng. A
,
508
(
1–2
), pp.
43
49
. 10.1016/j.msea.2008.12.017
29.
Rao
,
J.
,
Zhang
,
Y.
,
Zhang
,
K.
,
Wu
,
X.
, and
Huang
,
A.
,
2019
, “
Selective Laser Melted Al-7Si-0.6Mg Alloy With In-Situ Precipitation via Platform Heating for Residual Strain Removal
,”
Mater. Des.
,
182
, p.
108005
. 10.1016/j.matdes.2019.108005
30.
Cordova
,
L.
,
Campos
,
M.
, and
Tinga
,
T.
,
2019
, “
Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization
,”
JOM
,
71
(
3
), pp.
1062
1072
. 10.1007/s11837-018-3305-2
31.
Westlund
,
V.
,
Heinrichs
,
J.
,
Olsson
,
M.
, and
Jacobson
,
S.
,
2016
, “
Investigation of Material Transfer in Sliding Friction-Topography or Surface Chemistry?
,”
Tribol. Int.
,
100
, pp.
213
223
. 10.1016/j.triboint.2016.01.022
32.
Wei
,
L.
,
Han
,
B.
,
Ye
,
F.
,
Xu
,
Y.
, and
Wu
,
S.
,
2019
, “
Effects of Solidification Pressure and Heat Treatment on the Microstructure and Micro-Hardness of AlSi9CuMg Alloy
,”
Materials
,
12
(
14
), p.
2229
. 10.3390/ma12142229
33.
Jia
,
N.
,
Eisenlohr
,
P.
,
Roters
,
F.
,
Raabe
,
D.
, and
Zhao
,
X.
,
2012
, “
Orientation Dependence of Shear Banding in Face-Centered-Cubic Single Crystals
,”
Acta Mater.
,
60
(
8
), pp.
3415
3434
. 10.1016/j.actamat.2012.03.005
34.
Zabotnov
,
S.
,
Kashaev
,
F.
,
Shuleiko
,
D.
,
Skobelkina
,
A.
,
Vasyakov
,
A.
,
Petrov
,
A.
,
Chetvertukhin
,
A.
,
Evdokimov
,
P.
,
Garshev
,
A.
, and
Putlayev
,
V.
,
2018
, “
Formation of AlSi10Mg Surfaces via Selective Laser Melting: Scanning Electron Microscopy and Raman Spectroscopy Study
,”
J. Phys.: Conf. Ser.
,
1092
, p.
012170
. 10.1088/1742-6596/1092/1/012170
35.
Kumar Mishra
,
A.
, and
Kumar
,
A.
,
2020
, “
Effect of Surface Morphology on the Melt Pool Geometry in Single Track Selective Laser Melting
,”
Mater. Today: Proc.
,
27
, pp.
816
823
. 10.1016/j.matpr.2019.12.357
36.
Aggarwal
,
A.
, and
Kumar
,
A.
,
2019
, “
Particle Scale Modelling of Porosity Formation During Selective Laser Melting Process Using a Coupled DEM—CFD Approach
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
529
, p.
012001
. 10.1088/1757-899X/529/1/012001
37.
Chouhan
,
A.
,
Aggarwal
,
A.
, and
Kumar
,
A.
,
2020
, “
Microscale Analysis of Melt Pool Dynamics Due To Particle Impingement and Laser-Matter Interaction in the Spot Laser Metal Deposition Process
,”
JOM
,
72
(
3
), pp.
1138
1150
. 10.1007/s11837-019-04000-x
You do not currently have access to this content.