Abstract

In this study, the microstructure, high-temperature tribological performance, and mechanical properties of solution-aged Ti–10V–2Fe–3Al were investigated. The microstructure of solution-aged Ti–10V–2Fe–3Al reveals a bimodal α and β microstructure with uniformly dispersed α precipitates in the β matrix phase. The hot tribological performance of solution-aged Ti–10V–2Fe–3Al was investigated at different temperatures (28, 250, 350, and 450 °C) in a high-temperature pin-on-disc configuration. The wear mechanisms were evaluated at the worn-out surface using a scanning electron microscope (SEM). The abrasive wear mechanism is predominant at 28 °C and 250 °C testing conditions, whereas the oxidation and delamination are dominant wear mechanisms at 350 °C and 450 °C testing conditions. The worn-out surface at different temperature conditions was characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectrometer (EDS) analysis. The absence of protective oxide formation at 28 °C and intermittent protective oxide formation at 250 °C testing condition are ineffective in protecting the surface from wear damages and high wear loss. The protective tribo-oxide formations at 350 °C and 450 °C are continuous and provide improved wear resistance behavior of the material. The V2O5-rich tribo-oxide layer formation at 350 °C offers excellent wear resistance and protection against wear damages among the testing conditions. The Vickers microhardness study of the samples tested at different temperature conditions shows significant differences in the hardness magnitude at the cross section.

References

References
1.
Peters
,
M.
,
Kumpfert
,
J.
,
Ward
,
C. H.
, and
Leyens
,
C.
,
2003
, “
Titanium Alloys for Aerospace Applications
,”
Adv. Eng. Mater.
,
5
(
6
), pp.
419
427
. 10.1002/adem.200310095
2.
Uhlmann
,
E.
,
Kersting
,
R.
,
Klein
,
T. B.
,
Cruz
,
M. F.
, and
Borille
,
A. V.
,
2015
, “
Additive Manufacturing of Titanium Alloy for Aircraft Components
,”
Procedia CIRP
,
35
, pp.
55
60
. 10.1016/j.procir.2015.08.061
3.
Inagaki
,
I.
,
Takechi
,
T.
,
Shirai
,
Y.
, and
Ariyasu
,
N.
,
2014
, “
Application and Features of Titanium for the Aerospace Industry
,”
Nippon Steel Tech. Rep.
,
106
(
106
), pp.
22
27
. www.nipponsteel.com/en/tech/report/nssmc/pdf/106-05.pdf
5.
Srinivasu
,
G.
,
Natraj
,
Y.
,
Bhattacharjee
,
A.
,
Nandy
,
T. K.
, and
Rao
,
G. N.
,
2013
, “
Tensile and Fracture Toughness of High Strength β Titanium Alloy, Ti–10V–2Fe–3Al, as a Function of Rolling and Solution Treatment Temperatures
,”
Mater. Des
,
47
, pp.
323
330
. 10.1016/j.matdes.2012.11.053
6.
Mehdi
,
M.
,
Farokhzadeh
,
K.
, and
Edrisy
,
A.
,
2016
, “
Dry Sliding Wear Behavior of Superelastic Ti–10V–2Fe–3Al β-Titanium Alloy
,”
Wear
,
350–351
, pp.
10
20
. 10.1016/j.wear.2015.12.006
7.
Mouritz
,
A. P.
,
2012
,
Introduction to Aerospace Materials
,
Elsevier
,
New York
.
8.
Neelakantan
,
S.
,
San Martin
,
D.
,
Rivera-Díaz-del-Castillo
,
P. E.
, and
van der Zwaag
,
S.
,
2009
, “
Plasticity Induced Transformation in a Metastable β Ti-1023 Alloy by Controlled Heat Treatments
,”
Mater. Sci. Technol.
,
25
(
11
), pp.
1351
1358
. 10.1179/174328408X385773
9.
Dong
,
H.
,
2010
,
Surface Engineering of Light Alloys
,
Woodhead Publishing
,
Cambridge, UK
, pp.
58
80
.
10.
Oshida
,
Y.
,
2010
,
Bioscience and Bioengineering of Titanium Materials
,
Elsevier
,
New York
.
11.
Froes
,
F. H.
, and
Bomberger
,
H. B.
,
1985
, “
The Beta Titanium Alloys
,”
JOM
,
37
(
7
), pp.
28
37
. 10.1007/BF03259693
12.
Wang
,
K.
,
1996
, “
The use of Titanium for Medical Applications in the USA
,”
Mater. Sci. Eng., A
,
213
(
1–2
), pp.
134
137
. 10.1016/0921-5093(96)10243-4
13.
Tal-Gutelmacher
,
E.
, and
Eliezer
,
D.
,
2004
, “
Hydrogen-Assisted Degradation of Titanium Based Alloys
,”
Mater. Trans.
,
45
(
5
), pp.
1594
1600
. 10.2320/matertrans.45.1594
14.
Kailas
,
S. V.
, and
Biswas
,
S. K.
,
1997
, “
Sliding Wear of Titanium
,”
ASME J. Tribol.
,
119
(
1
), pp.
31
35
. 10.1115/1.2832476
15.
Banoth
,
R.
,
Chandravanshi
,
V.
,
Bhattacharjee
,
A.
,
Nandy
,
T. K.
, and
Rao
,
G. N.
,
2019
, “
Effect of Boron and Carbon Addition on Microstructure and Tribological Properties of Metastable Beta Titanium Alloy, Ti-10V-2Fe-3Al
,”
Mater. Today
,
18
, pp.
2700
2707
. 10.1016/j.matpr.2019.07.132
16.
Mao
,
Y. S.
,
Wang
,
L.
,
Chen
,
K. M.
,
Wang
,
S. Q.
, and
Cui
,
X. H.
,
2013
, “
Tribo-Layer and Its Role in Dry Sliding Wear of Ti–6Al–4V Alloy
,”
Wear
,
297
(
1–2
), pp.
1032
1039
. 10.1016/j.wear.2012.11.063
17.
Yerramareddy
,
S.
, and
Bahadur
,
S.
,
1991
, “
Effect of Operational Variables, Microstructure and Mechanical Properties on the Erosion of Ti-6Al-4V
,”
Wear
,
142
(
2
), pp.
253
263
. 10.1016/0043-1648(91)90168-T
18.
Liu
,
Y.
,
Chen
,
Q.
,
Du
,
X.
,
Liu
,
X.
, and
Li
,
P.
,
2019
, “
Effects of Substrate on the Structure and Properties of V2O5 Thin Films Prepared by the Sol-Gel Method
,”
AIP Adv.
,
9
(
4
), p.
045028
. 10.1063/1.5095718
19.
Wang
,
L.
,
Zhang
,
Q. Y.
,
Li
,
X. X.
,
Cui
,
X. H.
, and
Wang
,
S. Q.
,
2014
, “
Dry Sliding Wear Behavior of Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si Alloy
,”
Metall. Mater. Trans. A
,
45
(
4
), pp.
2284
2296
. 10.1007%2Fs11661-013-2167-z
20.
Zhang
,
Q. Y.
,
Zhou
,
Y.
,
Li
,
X. X.
,
Wang
,
L.
,
Cui
,
X. H.
, and
Wang
,
S. Q.
,
2016
, “
Accelerated Formation of Tribo-Oxide Layer and its Effect on Sliding Wear of a Titanium Alloy
,”
Tribol. Lett.
,
63
(
1
), p.
2
. 10.1007%2Fs11249-016-0694-7
21.
ASTM E562-11
,
2011
, “
Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count
,”
ASTM International
,
West Conshohocken, PA
, www.astm.org.
22.
ASTM G99-05
,
2005
, “
Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus
,”
ASTM International
,
West Conshohocken, PA
, www.astm.org
23.
ASTM E384-17
,
2017
, “
Standard Test Method for Microindentation Hardness of Materials
,”
ASTM International
,
West Conshohocken, PA
, www.astm.org
24.
Halling
,
J
,
1976
,
Introduction to Tribology
,
Taylor & Francis Group
,
London, Winchester
.
25.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Oxford, UK
.
26.
Thirugnanasambantham
,
K. G.
, and
Natarajan
,
S.
,
2016
, “
Mechanistic Studies on Degradation in Sliding Wear Behavior of IN718 and Hastelloy X Superalloys at 500 °C
,”
Tribol. Int.
,
101
, pp.
324
330
. 10.1016/j.triboint.2016.04.016
27.
Samuel
,
C. S.
,
Arivarasu
,
M.
, and
Prabhu
,
T. R.
,
2020
, “
High Temperature Dry Sliding Wear Behavior of Laser Powder bed Fused Inconel 718
,”
Addit. Manuf.
,
34
, p.
101279
. 10.1016/j.addma.2020.101279
28.
Jiang
,
J.
,
Stott
,
F. H.
, and
Stack
,
M. M.
,
1994
, “
Some Frictional Features Associated With the Sliding Wear of the Nickel-Base Alloy N80A at Temperatures to 250 C
,”
Wear
,
176
(
2
), pp.
185
194
. 10.1016/0043-1648(94)90146-5
29.
Kesavan
,
D.
, and
Kamaraj
,
M.
,
2010
, “
The Microstructure and High Temperature Wear Performance of a Nickel Base Hardfaced Coating
,”
Surf. Coat. Tech.
,
204
(
24
), pp.
4034
4043
. 10.1016/j.surfcoat.2010.05.022
30.
Williams
,
M. W.
,
1988
, “
The Formation of Fe3O4 During Unlubricated Sliding of 4340 Steel Under Both Light and Heavy Contact Pressures
,”
Wear
,
123
(
2
), pp.
193
205
. 10.1016/0043-1648(88)90099-3
31.
Saunders
,
S. R. J.
, and
Nicholls
,
J. R.
,
1996
, “
Oxidation, Hot Corrosion and Protection of Metallic Materials
,”
Phys Metall
, pp.
1291
1361
. 10.1016/b978-044489875-3/50019-3
32.
Kolli
,
R. P.
, and
Devaraj
,
A.
,
2018
, “
A Review of Metastable Beta Titanium Alloys
,”
Metals
,
8
(
7
), p.
506
. 10.3390/met8070506
33.
Polmear
,
I.
,
StJohn
,
D.
,
Nie
,
J. F.
, and
Qian
,
M.
,
2017
,
Light Alloys: Metallurgy of the Light Metals
,
Butterworth-Heinemann
,
Oxford, UK
.
34.
Gulbinski
,
W.
,
Suszko
,
T.
,
Sienicki
,
W.
, and
Warcholinski
,
B.
, “
Tribological Properties of Ag and Cu Doped Transition Metal Oxide Coatings
,”
Technical University of Koszalin, Raclawicka 15-17, 75-620 Koszalin, Poland
, www.oetg.at/fileadmin/Dokumente/oetg/Proceedings/WTC_2001_files/html/M-53-P52-423-GULBINSKI.pdf
35.
Prześniak-Welenc
,
M.
,
Łapiński
,
M.
,
Lewandowski
,
T.
,
Kościelska
,
B.
,
Wicikowski
,
L.
, and
Sadowski
,
W.
,
2015
, “
The Influence of Thermal Conditions on V2O5 Nanostructures Prepared by Sol-Gel Method
,”
J. Nanomater.
,
2015
, pp.
1
8
. 10.1155/2015/418024
36.
Altaf
,
M.
,
Dwivedi
,
S. P.
,
Kanwar
,
R. S.
,
Siddiqui
,
I. A.
,
Sagar
,
P.
, and
Ahmad
,
S.
,
2019
, “
Machining Characteristics of Titanium Ti-6Al-4V, Inconel 718 and Tool Steel-A Critical Review
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
691
, p.
012052
. 10.1088/1757-899X/691/1/012052
37.
Zaki
,
Z. I.
, and
Francis
,
A. A.
,
2013
, “
In Situ TiC/Al3Ti Intermetallic Alloy Composite Produced by SHS
,”
Combust. Sci. Technol.
,
185
(
6
), pp.
943
952
. 10.1080/00102202.2013.766605
38.
Zhang
,
Z.
, and
Dong
,
H.
,
2014
, “
A State-of-the-Art Overview-Recent Development in low Friction and Wear-Resistant Coatings and Surfaces for High-Temperature Forming Tools
,”
Manuf. Rev.
,
1
, p.
24
. 10.1051/mfreview/2015001
You do not currently have access to this content.