Abstract

The purpose of this technical brief is to investigate comparatively the static characteristics of the double-pad inwardly pumping and outwardly pumping water-lubricated spiral-groove thrust bearings (SGTBs). Firstly, a thermo-hydrodynamic lubrication model including the cavitating, centrifugal, and turbulent effects is established for the double-pad water-lubricated SGTB operating at a high-speed condition. Subsequently, the film thickness and volume flowrate are verified by an experimental study for the high-speed water-lubricated SGTBs. Finally, the effects of the operating conditions and configuration parameters on the static characteristics of the double-pad inwardly pumping and outwardly pumping SGTBs are analyzed systematically. The simulated results show that when the radius ratio exceeds 0.7, the outwardly pumping SGTB can perform better than the inwardly pumping version, with good axial load capacity, higher resistance to tilting and always positive radial flowrate.

References

1.
Yoshimoto
,
S.
,
Anno
,
Y.
,
Tamura
,
M.
,
Kakiuchi
,
Y.
, and
Kimura
,
K.
,
1996
, “
Axial Load Capacity of Water-Lubricated Hydrostatic Conical Bearings With Spiral Grooves (on the Case of Rigid Surface Bearings)
,”
ASME J. Tribol.
,
118
(
4
), pp.
893
899
. 10.1115/1.2831625
2.
Lin
,
X.
,
Jiang
,
S.
,
Zhang
,
C.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
. 10.1016/j.triboint.2017.11.037
3.
Muijderman
,
E. A.
,
1967
, “
Analysis and Design of Spiral-Groove Bearings
,”
ASME J. Lubr. Technol.
,
1
(
3
), pp.
291
305
. 10.1115/1.3616974
4.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
547
555
. 10.1115/1.3650603
5.
Zhang
,
S.
,
Jiang
,
S.
, and
Lin
,
X.
,
2020
, “
Comparative Study on Dynamic Characteristics of Double-pad Inwardly and Outwardly Pumping Water-Lubricated Spiral-Groove Thrust Bearings
,”
ASME J. Tribol.
,
142
(
9
), p.
091803
. 10.1115/1.4046802
6.
Whipple
,
R. T. P.
,
1958
, “
The Inclined Groove Bearing
,”
Atomic Energy Research Establishment, Harwell, Berkshire, UK, Report No. AERE-T/R-622
.
7.
Brunetière
,
N.
,
2017
, “
A General Model for Liquid and Gas Lubrication, Including Cavitation
,”
ASME J. Tribol.
,
140
(
2
), p.
021702
. 10.1115/1.4037355
8.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2007
, “
Theoretical Analysis and Optimum Design of High Speed Gas Film Thrust Bearings (Static and Dynamic Characteristics Analysis With Experimental Verifications)
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
1
), pp.
102
112
. 10.1299/jamdsm.1.102
9.
Zhao
,
X.
,
Yuan
,
S. H.
, and
Wei
,
C.
,
2018
, “
Influence of Fluid Slip on Operation Characteristics for High-Speed Spiral Groove Seal Ring
,”
Tribol. Lett.
,
66
(
1
), p.
49
. 10.1007/s11249-018-0991-4
10.
Zhu
,
Q.
, and
Zhang
,
W. J.
,
2000
, “
A Numerical Procedure Based on the Boundary Element Method Analysis of the Archimedean Spiral Grooved Thrust oil Bearing
,”
ASME J. Tribol.
,
122
(
3
), pp.
565
572
. 10.1115/1.555402
11.
Salant
,
R. F.
, and
Homiller
,
S. J.
,
1992
, “
The Effects of Shallow Groove Patterns on Mechanical Seal Leakage
,”
Tribol. Trans.
,
35
(
1
), pp.
142
148
. 10.1080/10402009208982101
12.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2013
, “
On the Optimum Groove Shapes for Load-Carrying Capacity Enhancement in Parallel Flat Surface Bearings: Theory and Experiment
,”
Tribol. Int.
,
67
, pp.
254
262
. 10.1016/j.triboint.2013.08.001
13.
Zirkelback
,
N.
,
2000
, “
Parametric Study of Spiral Groove gas Face Seals
,”
Tribol. Trans.
,
43
(
2
), pp.
337
343
. 10.1080/10402000008982349
14.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Investigation of Tribological Behaviors of Annular Rings With Spiral Groove
,”
Tribol. Int.
,
44
(
12
), pp.
1610
1619
. 10.1016/j.triboint.2011.05.008
15.
Ma
,
X.
,
Meng
,
X.
,
Wang
,
Y.
, and
Peng
,
X.
,
2019
, “
Suction Effect of Cavitation in the Reverse-Spiral-Grooved Mechanical Face Seals
,”
Tribol. Int.
,
132
, pp.
142
153
. 10.1016/j.triboint.2018.12.022
16.
Amaral
,
F.
,
Groß-Hardt
,
S.
,
Timms
,
D.
,
Egger
,
C.
,
Steinseifer
,
U.
, and
Schmitz-Rode
,
T.
,
2013
, “
The Spiral Groove Bearing as a Mechanism for Enhancing the Secondary Flow in a Centrifugal Rotary Blood Pump
,”
Artif. Organs
,
37
(
10
), pp.
866
874
. 10.1111/aor.12081
17.
Payvar
,
P.
, and
Salant
,
R. F.
,
1992
, “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
,
114
(
1
), pp.
199
204
. 10.1115/1.2920861
18.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2012
, “
Thermohydrodynamic Analysis of Spiral Groove Mechanical Face Seal for Liquid Applications
,”
ASME J. Tribol.
,
134
(
2
), p.
021703
. 10.1115/1.4006063
19.
Bai
,
S.
,
Peng
,
X.
,
Meng
,
Y.
, and
Wen
,
S.
,
2012
, “
Modeling of Gas Thermal Effect Based on Energy Equipartition Principle
,”
Tribol. Trans.
,
55
(
6
), pp.
752
761
. 10.1080/10402004.2012.706181
20.
Ruan
,
B.
,
Salant
,
R. F.
, and
Green
,
I.
,
1997
, “
A Mixed Lubrication Model of Liquid/gas Mechanical Face Seals
,”
Tribol. Trans.
,
40
(
4
), pp.
647
657
. 10.1080/10402009708983705
21.
Constantinescu
,
V. N.
, and
Galetuse
,
S.
,
1982
, “
Operating Characteristics of Journal Bearings in Turbulent Inertial Flow
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
173
179
. 10.1115/1.3253177
22.
Guo
,
L.
,
2002
,
Two- and Multi-Phase Flow Dynamics
,
Xi’an Jiaotong University Press
,
Xi’an, China
, p.
431
.
23.
Brunetilère
,
N.
, and
Tournerie
,
B.
,
2007
, “
Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films
,”
ASME J. Tribol.
,
129
(
4
), pp.
876
886
. 10.1115/1.2768089
You do not currently have access to this content.