Abstract

A comprehensive numerical loaded tooth contact analysis (LTCA) model is proposed for straight bevel gears that exhibit large number of teeth in contact, well beyond the involute line of action limits. This kind of contact is observed when the meshing gears have conformal surfaces, as in a pericyclic mechanical transmission, and is traditionally analyzed using finite element simulations. The pericyclic drive is kinematically similar to an epicyclic bevel gear train and is characterized by load sharing over large number of teeth in an internal–external bevel gear mesh, large shaft angles (175–178 deg), nutational gear motion, and high reduction ratio. The contact region spreads over a large area on the gear tooth flank due to high contacting surface conformity. Thus, a thick plate finite strip method (FSM) was utilized to accurately calculate the gear tooth bending deflection. Based on the tooth deformation calculation model and accounting for initial surface separation, a variational framework is developed to simultaneously solve for load distribution and gear tooth deformation. This is followed by calculation of contact stress, bending stress, mesh stiffness, and transmission error. The results demonstrate the high-power density capabilities of the pericyclic drive and potential for gear noise reduction. The model developed herein is applied with real gear tooth surfaces, as well.

References

References
1.
Bill
,
R. C.
,
1990
, “
Advanced Rotorcraft Transmission Program
,”
National Aeronautics and Space Administration Cleveland OH Lewis Research Center
, Technical Report.
2.
Lewicki
,
D. G.
,
Handschuh
,
R. F.
,
Henry
,
Z. S.
, and
Litvin
,
F. L.
,
1994
, “
Low-Noise, High-Strength, Spiral-Bevel Gears for Helicopter Transmissions
,”
J. Propul. Power
,
10
(
3
), pp.
356
361
. 10.2514/3.23764
3.
Saribay
,
Z.
,
Wei
,
F.-S.
, and
Sahay
,
C.
,
2005
, “
Optimization of an Intermeshing Rotor Transmission System Design
,”
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Austin, TX
,
Apr. 18–21
, p.
2286
.
4.
Nelson
,
C. A.
, and
Cipra
,
R. J.
,
2005
, “
Similarity and Equivalence of Nutating Mechanisms to Bevel Epicyclic Gear Trains for Modeling and Analysis
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
269
277
. 10.1115/1.1829068
5.
Krenzer
,
T. J.
,
1981
, “
Tooth Contact Analysis of Spiral Bevel and Hypoid Gears Under Load
,”
SAE Trans.
, pp.
2205
2216
.
6.
Gosselin
,
C.
,
Cloutier
,
L.
, and
Nguyen
,
Q.
,
1995
, “
A General Formulation for the Calculation of the Load Sharing and Transmission Error Under Load of Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
30
(
3
), pp.
433
450
. 10.1016/0094-114X(94)00049-Q
7.
Elkholy
,
A.
,
Elsharkawy
,
A.
, and
Yigit
,
A.
,
1998
, “
Effect of Meshing Tooth Stiffness and Manufacturing Error on the Analysis of Straight Bevel Gears
,”
J. Struct. Mech.
,
26
(
1
), pp.
41
61
.
8.
Sheveleva
,
G. I.
,
Volkov
,
A. E.
, and
Medvedev
,
V. I.
,
2007
, “
Algorithms for Analysis of Meshing and Contact of Spiral Bevel Gears
,”
Mech. Mach. Theory
,
42
(
2
), pp.
198
215
. 10.1016/j.mechmachtheory.2006.02.009
9.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2009
, “
A Load Distribution Model for Hypoid Gears Using Ease-Off Topography and Shell Theory
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1848
1865
. 10.1016/j.mechmachtheory.2009.03.009
10.
Pedrero
,
J. I.
,
Pleguezuelos
,
M.
, and
Aguiriano
,
S.
,
2007
, “
Load Distribution Model for Involute Internal Gear Sets
,”
ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, pp.
127
133
.
11.
Drago
,
R. J.
, and
Lemanski
,
A.
,
1974
, “
Nutating Mechanical Transmission (Maroth Drive Principle)
,”
BOEING VERTOL CO
,
Philadelphia, PA
, Technical Report.
12.
Molyneux
,
W.
,
1997
, “
The Internal Bevel Gear and Its Applications
,”
Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng.
,
211
(
1
), pp.
39
61
. 10.1243/0954410971532488
13.
Saribay
,
Z. B.
,
2009
,
Analytical Investigation of the Pericyclic Variable-Speed Transmission System for Helicopter Main-Gearbox
.
14.
Saribay
,
Z. B.
,
Bill
,
R. C.
,
Smith
,
E. C.
, and
Rao
,
S. B.
,
2012
, “
Elastohydrodynamic Lubrication Analysis of Conjugate Meshing Face Gear Pairs
,”
J. Am. Helicopter Soc.
,
57
(
3
), pp.
1
10
. 10.4050/JAHS.57.032003
15.
Saribay
,
Z. B.
, and
Bill
,
R. C.
,
2013
, “
Design Analysis of Pericyclic Mechanical Transmission System
,”
Mech. Mach. Theory
,
61
, pp.
102
122
. 10.1016/j.mechmachtheory.2012.10.007
16.
Saribay
,
Z. B.
,
2013
, “
Tooth Geometry and Bending Stress Analysis of Conjugate Meshing Face-Gear Pairs
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
227
(
6
), pp.
1302
1314
. 10.1177/0954406212457644
17.
Bolze
,
M. J.
, and
Stadtfeld
,
H. J.
,
2018
, “
Internal Bevel Gear
,”
July 10, US Patent 10,016,825
.
18.
Stadtfeld
,
H. J.
,
2020
,
eDrive Transmission Guide
,
Gleason Corporation
,
Rochester, NY
.
19.
Mathur
,
T. D.
,
Smith
,
E.
,
Bill
,
R. C.
, and
DeSmidt
,
H.
,
2018
, “
Design of a High Power Density Pericyclic Drive Prototype for Testing at NASA Glenn Transmission Test Facility
,”
Annual Forum Proceedings—AHS International
,
Phoenix, AZ
,
May 14–17
.
20.
Mathur
,
T. D.
,
Smith
,
E. C.
,
DeSmidt
,
H.
, and
Bill
,
R. C.
,
2016
, “
Load Distribution and Mesh Stiffness Analysis of an Internal-External Bevel Gear Pair in a Pericyclic Drive
,”
American Helicopter Society 72nd Annual Forum
,
West Palm Beach, FL
,
May 13–16
.
21.
Syzrantsev
,
V. N.
,
Denisov
,
J. G.
,
Wiebe
,
V. P.
, and
Pazyak
,
A. A.
,
2015
, “
The Design and Production of Drives Based on Pan Precess Gear for Oil and Gas Machinery
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
, American Society of Mechanical Engineers, p.
V010T11A057
.
22.
Mathur
,
T. D.
,
Smith
,
E. C.
,
Chang
,
L.
, and
Bill
,
R. C.
,
2017
, “
Contact Mechanics and Elasto-hydrodynamic Lubrication Analysis of Internal–External Straight Bevel Gear Mesh in a Pericyclic Drive
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, American Society of Mechanical Engineers, p.
V010T11A048
.
23.
Vijayakar
,
S. M.
,
Busby
,
H. R.
, and
Houser
,
D. R.
,
1988
, “
Linearization of Multibody Frictional Contact Problems
,”
Comput. Struct.
,
29
(
4
), pp.
569
576
. 10.1016/0045-7949(88)90366-5
24.
Vaidyanathan
,
S.
,
Busby
,
H.
, and
Houser
,
D.
,
1994
, “
A Numerical Approach to the Static Analysis of an Annular Sector Mindlin Plate With Applications to Bevel Gear Design
,”
Comput. Struct.
,
51
(
3
), pp.
255
266
. 10.1016/0045-7949(94)90333-6
25.
Gagnon
,
P.
,
Gosselin
,
C.
, and
Cloutier
,
L.
,
1997
, “
Analysis of Spur and Straight Bevel Gear Teeth Deflection by the Finite Strip Method
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
421
426
. 10.1115/1.2826385
26.
Ligata
,
H.
, and
Zhang
,
H.
,
2012
, “
Geometry Definition and Contact Analysis of Spherical Involute Straight Bevel Gears
,”
Int. J. Ind. Eng. Prod. Res.
,
23
(
2
), pp.
101
111
.
27.
Hong
,
J.
,
Talbot
,
D.
, and
Kahraman
,
A.
,
2014
, “
Load Distribution Analysis of Clearance-Fit Spline Joints Using Finite Elements
,”
Mech. Mach. Theory
,
74
, pp.
42
57
. 10.1016/j.mechmachtheory.2013.11.007
28.
Bentley
,
J. L.
,
1975
, “
Multidimensional Binary Search Trees Used for Associative Searching
,”
Commun. ACM
,
18
(
9
), pp.
509
517
. 10.1145/361002.361007
29.
Stegemiller
,
M.
, and
Houser
,
D.
,
1993
, “
A Three-Dimensional Analysis of the Base Flexibility of Gear Teeth
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
186
192
. 10.1115/1.2919317
30.
Cheung
,
Y. K.
, and
Tham
,
L.
,
1997
,
The Finite Strip Method
, Vol.
17
,
CRC Press
,
Boca Raton, FL
.
31.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
32.
Polonsky
,
I.
, and
Keer
,
L.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
. 10.1016/S0043-1648(99)00113-1
33.
Brewe
,
D. E.
, and
Hamrock
,
B. J.
,
1977
, “
Simplified Solution for Elliptical-Contact Deformation Between Two Elastic Solids
,”
ASME J. Lubr. Technol.
,
99
(
4
), pp.
485
487
. 10.1115/1.3453245
34.
Froede
,
E. W.
,
2013
,
Computer Aided Design, Simulation and Transmission Error Analysis of a Face Gear Pair
.
35.
Mark
,
W. D.
,
2012
,
Performance-Based Gear Metrology: Kinematic-Transmission-Error Computation and Diagnosis
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.