Abstract

This paper investigates the friction and friction heat of the micronscale iron under the influences such as the velocity of the slider and temperature of the substrate by using the smoothed particle hydrodynamics simulations. It is found that in the velocity range of 10–100 m/s, the sliding velocity–friction coefficient relationship well complies with the fitted exponent or hyperbolic tangent function, and the friction coefficient approaches a stable value of 0.3 at around the velocity of 50 m/s after a rapidly increasing situation. The steady friction coefficient maintains over the temperature range of 200–400 K. The friction heat is detailed analyzed versus the sliding time. The sliding time–system temperature relationship is well fitted by the sigmoidal functions, except the interfacial particle layers. The layer causing friction shows the highest steady temperature and largest temperature rise. The increment between the initial temperatures of the slider and the substrate strongly results in the temperature rise while it does not affect the configuration of the sliding time–system temperature curves.

References

1.
Liew
,
K. W.
, and
Nirmal
,
U.
,
2013
, “
Frictional Performance Evaluation of Newly Designed Brake Pad Materials
,”
Mater. Des.
,
48
, pp.
25
33
. 10.1016/j.matdes.2012.07.055
2.
Cross
,
R.
,
2005
, “
Increase in Friction Force With Sliding Speed
,”
Am. J. Phys.
,
73
(
9
), pp.
812
816
. 10.1119/1.1891174
3.
Chowdhury
,
M. A.
,
Nuruzzaman
,
D. M.
,
Roy
,
B. K.
,
Dey
,
P. K.
,
Mostafa
,
M. G.
,
Islam
,
M. S.
, and
Mia
,
M. R.
,
2013
, “
Experimental Investigation on Friction and Wear of Stainless Steel 304 Sliding Against Different Pin Materials
,”
World Appl. Sci. J.
,
22
, p.
1702
.
4.
Teidelt
,
E.
,
Starcevic
,
J.
, and
Popov
,
V. L.
,
2012
, “
Influence of Ultrasonic Oscillation on Static and Sliding Friction
,”
Tribol. Lett
,
48
(
1
), pp.
51
62
. 10.1007/s11249-012-9937-4
5.
Li
,
Q.
,
Dimaki
,
A.
,
Popov
,
M.
,
Psakhie
,
S. G.
, and
Popov
,
V. L.
,
2014
, “
Kinetics of the Coefficient of Friction of Elastomers
,”
Sci. Rep.
,
4
, p.
1
.
6.
Washizu
,
H.
,
Kajita
,
S.
,
Tohyama
,
M.
,
Ohmori
,
T.
,
Nishino
,
N.
,
Teranishi
,
H.
, and
Suzuki
,
A.
,
2012
, “
Mechanism of Ultralow Friction of Multilayer Graphene Studied by Coarse-Grained Molecular Simulation
,”
Faraday Discuss.
,
156
, p.
279
. 10.1039/c2fd00119e
7.
Maeda
,
T.
, and
Washizu
,
H.
,
2018
, “
Mechanism of Ultra-low Friction of Multilayer Graphene Studied by all Atom Molecular Dynamics
,”
Microsyst. Technol.
,
24
(
1
), pp.
757
764
. 10.1007/s00542-017-3398-5
8.
Shibata
,
K.
,
Yamaguchi
,
T.
, and
Hokkirigawa
,
K.
,
2014
, “
Tribological Behavior of RH Ceramics Made From Rice Husk Sliding Against Stainless Steel, Alumina, Silicon Carbide, and Silicon Nitride
,”
Tribol. Int
,
73
, pp.
187
194
. 10.1016/j.triboint.2014.01.021
9.
Dunckle
,
C. G.
,
Altfeder
,
I. B.
,
Voevodin
,
A. A.
,
Jones
,
J.
,
Krim
,
J.
, and
Taborek
,
P.
,
2010
, “
Temperature Dependence of Single-Asperity Friction for a Diamond on Diamondlike Carbon Interface
,”
J. Appl. Phys.
,
107
(
11
), p.
114903
. 10.1063/1.3436564
10.
Pearson
,
S. R.
,
Shipway
,
P. H.
,
Abere
,
J. O.
, and
Hewitt
,
R. A. A.
,
2013
, “
The Effect of Temperature on Wear and Friction of a High Strength Steel in Fretting
,”
Wear
,
303
(
1–2
), pp.
622
631
. 10.1016/j.wear.2013.03.048
11.
Kagnaya
,
T.
,
Boher
,
C.
,
Lambert
,
L.
,
Lazard
,
M.
, and
Cutard
,
T.
,
2009
, “
Friction at High Sliding Speed of WC-6Co pin Versus Steel Disc AISI 1045: Estimation of the Contact Temperature
,”
Int. J. Multiphys.
,
3
(
2
), pp.
141
153
. 10.1260/175095409788837793
12.
Lestyan
,
Z.
,
Varadi
,
K.
, and
Albers
,
A.
,
2007
, “
Contact and Thermal Analysis of an Alumina–Steel Dry Sliding Friction Pair Considering the Surface Roughness
,”
Tribol. Int
,
40
(
6
), pp.
982
994
. 10.1016/j.triboint.2006.02.057
13.
Imado
,
K.
,
Miura
,
A.
,
Nagatoshi
,
M.
,
Kido
,
Y.
,
Miyagawa
,
H.
, and
Higaki
,
H.
,
2004
, “
A Study of Contact Temperature due to Frictional Heating of UHMWPE
,”
Tribol. Lett.
,
16
(
4
), pp.
265
273
. 10.1023/B:TRIL.0000015202.29861.8d
14.
Mair
,
K.
,
Renard
,
F.
, and
Gundersen
,
O.
,
2006
, “
Thermal Imaging on Simulated Faults During Frictional Sliding
,”
Geophys. Res. Lett.
,
33
(
19
), p.
L19301
. 10.1029/2006GL027143
15.
Laux
,
K. A.
,
Jean-Fulcrand
,
A.
,
Sue
,
H. J.
,
Bremner
,
T.
, and
Wong
,
J. S. S.
,
2016
, “
The Influence of Surface Properties on Sliding Contact Temperature and Friction for Polyetheretherketone (PEEK)
,”
Polymer
,
103
, pp.
397
404
. 10.1016/j.polymer.2016.09.064
16.
Kalin
,
M.
,
2004
, “
Influence of Flash Temperatures on the Tribological Behaviour in Low–Speed Sliding: A Review
,”
Mater. Sci. Eng. A
,
374
(
1–2
), pp.
390
397
. 10.1016/j.msea.2004.03.031
17.
Sutter
,
G.
, and
Ranc
,
N.
,
2010
, “
Flash Temperature Measurement During Dry Friction Process at High Sliding Speed
,”
Wear
,
268
(
11–12
), pp.
1237
1242
. 10.1016/j.wear.2010.01.019
18.
Li
,
B.
,
Clapp
,
P. C.
,
Rifkin
,
J. A.
, and
Zhang
,
X. M.
,
2003
, “
Molecular Dynamics Calculation of Heat Dissipation During Sliding Friction
,”
Int. J. Heat Mass Transfer
,
46
(
1
), pp.
37
43
. 10.1016/S0017-9310(02)00258-2
19.
Mu
,
L.
,
Shi
,
Y.
,
Feng
,
X.
,
Zhu
,
J.
, and
Lu
,
X.
,
2012
, “
The Effect of Thermal Conductivity and Friction Coefficient on the Contact Temperature of Polyimide Composites: Experimental and Finite Element Simulation
,”
Tribol. Int.
,
53
, pp.
45
52
. 10.1016/j.triboint.2012.04.003
20.
Sang
,
L. V.
,
Yano
,
A.
,
Fujii
,
S.
,
Sugimura
,
N.
, and
Washizu
,
H.
,
2018
, “
Coarse-Grained Model for Spring Friction Study of Micron-Scale Iron by Smoothed Particle Hydrodynamics
,”
EPL
,
122
(
2
), p.
26004
. 10.1209/0295-5075/122/26004
21.
Zeng
,
J.
,
Shen
,
J.
, and
Liu
,
H.
,
2019
, “
A Parametric Study of dam Break Flow Feature Over a dry bed Using SPH Modeling
,”
Proceedings of the 10th International Conference on Asian and Pacific Coasts (APAC 2019)
,
Hanoi, Vietnam
,
Sept. 25–28
.
22.
Rayne
,
J. A.
, and
Chandrasekhar
,
B. S.
,
1961
, “
Elastic Constants of Iron From 4.2 to 300 °K
,”
Phys. Rev
,
122
(
6
), pp.
1714
1716
. 10.1103/PhysRev.122.1714
23.
Pensini
,
E.
,
Sleep
,
B. E.
,
Yip
,
C. M.
, and
O’carroll
,
D.
,
2013
, “
Forces of Interaction Between Fresh Iron Particles and Iron Oxide (Magnetite): Effect of Water Chemistry and Polymer Coatings
,”
Colloids Surf., A
,
433
, pp.
104
110
. 10.1016/j.colsurfa.2013.05.019
24.
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Liley
,
P. E.
,
1966
,
Thermal Conductivity of Selected Materials
,
U.S. Government Printing Office
,
Washington, DC
.
25.
Desai
,
P. D.
,
1986
, “
Thermodynamics Properties of Iron and Silicon
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
967
983
. 10.1063/1.555761
26.
Iwasawa
,
M.
,
Tanikawa
,
A.
,
Hosono
,
N.
,
Nitadori
,
K.
,
Muranushi
,
T.
, and
Makino
,
J.
,
2016
, “
Implementation and Performance of FDPS: a Framework for Developing Parallel Particle Simulation Codes
,”
Publ. Astron. Soc. Jpn
,
68
(
4
), p.
54
. 10.1093/pasj/psw053
27.
Zhang
,
Q.
,
Qi
,
Y.
,
Hector
,
L. G.
, Jr.
,
Çağın
,
T.
, and
Goddard
,
W. A.
, III
,
2005
, “
Atomic Simulations of Kinetic Friction and its Velocity Dependence at Al/Al and α-Al2O3/α-Al2O3 Interfaces
,”
Phys. Rev. B
,
72
(
4
), p.
045406
. 10.1103/PhysRevB.72.045406
28.
Kuznetsov
,
V. D.
,
1966
,
Metal Transfer and Build-up in Friction and Cutting
,
Pergamon
,
London
.
29.
Furlan
,
K. P.
,
Prates
,
P. B.
,
Santos
,
T. A. D.
,
Dias
,
M. V. G.
,
Ferreira
,
H. T.
,
Neto
,
J. B. R.
, and
Klein
,
A. N.
,
2015
, “
Influence of Alloying Elements on the Sintering Thermodynamics, Microstructure and Properties of Fe–MoS2 Composites
,”
J. Alloy Comp.
,
652
, pp.
450
458
. 10.1016/j.jallcom.2015.08.242
30.
Andersson
,
S.
,
Söderberg
,
A.
, and
Björklund
,
S.
,
2007
, “
Friction Models for Sliding dry, Boundary and Mixed Lubricated Contacts
,”
Tribol. Int
,
40
(
4
), pp.
580
587
. 10.1016/j.triboint.2005.11.014
31.
Wojtyra
,
M.
,
2003
, “
Multibody Simulation Model of Human Walking
,”
Mech. Based Des. Struct. Mach.
,
31
(
3
), pp.
357
379
. 10.1081/SME-120022855
32.
Pennestri
,
E.
,
Valentini
,
P. P.
, and
Vita
,
L.
,
2007
, “
Multibody Dynamics Simulation of Planar Linkages with Dahl Friction
,”
Multibody Syst. Dyn.
,
17
(
4
), pp.
321
347
. 10.1007/s11044-007-9047-5
33.
Sideris
,
P.
, and
Filiatrault
,
A.
,
2014
, “
Seismic Response of Squat Rigid Bodies on Inclined Planes with Rigid Boundaries
,”
J. Eng. Mech.
,
140
(
1
), pp.
149
158
. 10.1061/(ASCE)EM.1943-7889.0000658
34.
Marklund
,
P.
,
Maki
,
R.
,
Larsson
,
R.
,
Hoglund
,
E.
,
Khonsarib
,
M. M.
, and
Jang
,
J.
,
2007
, “
Thermal Influence on Torque Transfer of wet Clutches in Limited Slip Differential Applications
,”
Tribol. Int
,
40
(
5
), pp.
876
884
. 10.1016/j.triboint.2006.09.004
35.
Braun
,
O.
, and
Peyrard
,
M.
,
2011
, “
Dependence of Kinetic Friction on Velocity: Master Equation Approach
,”
Phys. Rev. E
,
83
(
4
), p.
046129
. 10.1103/PhysRevE.83.046129
36.
Persson
,
B. N. J.
,
1995
, “
Theory of Friction: Stress Domains, Relaxation, and Creep
,”
Phys. Rev. B
,
51
(
19
), pp.
13568
13585
. 10.1103/PhysRevB.51.13568
37.
Srinivasan
,
M.
, and
Walcott
,
S.
,
2009
, “
Binding Site Models of Friction due to the Formation and Rupture of Bonds: State-Function Formalism, Force-Velocity Relations, Response to Slip Velocity Transients, and Slip Stability
,”
Phys. Rev. E
,
80
(
4
), p.
046124
. 10.1103/PhysRevE.80.046124
38.
Ertz
,
M.
, and
Knothe
,
K.
,
2002
, “
A Comparison of Analytical and Numerical Methods for the calculation of Temperatures in Wheel/Rail Contact
,”
Wear
,
253
(
3–4
), pp.
498
508
. 10.1016/S0043-1648(02)00120-5
39.
Yevtushenko
,
A.
,
Kuciej
,
M.
,
Och
,
E.
, and
Yevtushenko
,
O.
,
2016
, “
Effect of the Thermal Sensitivity in Modeling of the Frictional Heating During Braking
,”
Adv. Mech. Eng.
,
8
(
12
), p.
1
. 10.1177/1687814016681744
40.
Xu
,
A.
,
Tian
,
P.
,
Wen
,
S.
,
Guo
,
F.
,
Hu
,
Y.
,
Jia
,
W.
,
Dong
,
C.
, and
Tian
,
Y.
,
2017
, “
Differences in Tribological Behaviors upon Switching Fixed and Moving Materials of Tribo-Pairs Including Metal and Polymer
,”
Sci. Rep
,
7
(
1
), p.
1
. 10.1038/s41598-016-0028-x
41.
Perfilyev
,
V.
,
Moshkovich
,
A.
,
Lapsker
,
I.
,
Laikhtman
,
A.
, and
Rapoport
,
L.
,
2013
, “
The Effect of Vanadium Content and Temperature on Stick–Slip Phenomena Under Friction of CrV(x)N Coatings
,”
Wear
,
307
(
1–2
), pp.
44
51
. 10.1016/j.wear.2013.08.012
42.
Dias
,
R. A.
,
Rapini
,
M.
, and
Costa
,
B. V.
,
2006
, “
Temperature Dependent Molecular Dynamic Simulation of Friction
,”
Braz. J. Phys.
,
36
(
3a
), pp.
741
745
. 10.1590/S0103-97332006000500029
You do not currently have access to this content.