Abstract

AISI 316 austenitic steel is extensively used in various components of power plants like boilers, boiler tubes and pipes, which suffer severe air jet erosion. Fly ash is a major erodent in that case. Present study is conducted to study the effect of Cr3C225 (Ni20Cr) coating on 316 substrates, when it is exposed to thermal power plant erosive conditions. High-velocity oxy-fuel deposition technique is used for coating. Major constituent of Indian fly ash is alumina, so alumina particles are taken as erodent. Erosion wear behavior is investigated for coated and uncoated conditions using an air jet erosion tester at 100 m/s impact velocity. Three impact angles, i.e., 30 deg, 60 deg, and 90 deg, and four working temperatures, room temperature, 200 °C, 400 °C, and 600 °C, were chosen to identify wear mechanism. Scanning electron microscopy and energy dispersive X-ray spectroscopy (EDX) were utilized to characterize the coated, uncoated, and eroded surface. Erosion behavior is correlated with micro hardness, roughness, and microstructure. Results reveal that the coated surface offers better erosion resistance than the uncoated surface. Substrate exhibits ductile wear behavior as it shows higher wear rate at low angle and decreases on increasing the impact angle, while coating offers good wear characteristics at 30 deg and 90 deg impact angles. An increase in working temperature favors wear rate increment for both coated and uncoated samples. However, coated samples exhibit ductile erosive behavior at high temperatures. Uncoated surfaces have micro-cutting and deformation as major erosive mechanisms. Whereas for coated samples at high temperature, oxide layer formation takes place and erosion takes place due to spalling of the oxides from the coated surface.

References

1.
Acuña
,
S. M.
,
Moreno
,
C. M.
, and
Espinosa
,
E. J.
,
2018
, “
Evaluation of Tribological Wear and Corrosion in Coatings of Diamalloy 4060NS Deposited by Thermal Spray
,”
J. Phys.: Conf. Ser.
, pp.
935
942
. 10.1088/1742-6596/935/1/012018
2.
Cavaliere
,
P.
,
Silvello
,
A.
,
Cinca
,
N.
,
Canales
,
H.
,
Dosta
,
S.
,
Cano
,
I. G.
, and
Guilemany
,
J. M.
,
2017
, “
Microstructural and Fatigue Behavior of Cold Sprayed Ni-Based Superalloys Coatings
,”
Surf. Coat. Technol.
,
324
, pp.
390
402
. 10.1016/j.surfcoat.2017.06.006
3.
Zhang
,
Y.
,
Shockley
,
J. M.
,
Vo
,
P.
, and
Chromik
,
R. R.
,
2016
, “
Tribological Behavior of a Cold-Sprayed Cu–MoS2 Composite Coating During Dry Sliding
,”
Tribol. Lett.
,
62
(
9
), pp.
1
12
. 10.1007/s11249-016-0650-6
4.
Reddy
,
N. C.
,
Kumar
,
B. S. A.
,
Reddappa
,
H. N.
,
Ramesh
,
M. R.
,
Koppad
,
P. G.
, and
Kord
,
S.
,
2018
, “
HVOF Sprayed Ni3Ti and Ni3Ti+ (Cr3C2+20NiCr) Coatings: Microstructure, Microhardness and Oxidation Behaviour
,”
J. Alloys Compd.
,
736
, pp.
236
245
. 10.1016/j.jallcom.2017.11.131
5.
Vasudev
,
H.
,
Thakur
,
L.
,
Bansal
,
A.
,
Singh
,
H.
, and
Zafar
,
S.
,
2019
, “
High Temperature Oxidation and Erosion Behaviour of HVOF Sprayed Bilayer Alloy-718/NiCrAlY Coating
,”
Surf. Coat. Technol.
,
362
, pp.
366
380
. 10.1016/j.surfcoat.2019.02.012
6.
Pulsford
,
J.
,
Kamnis
,
S.
,
Murray
,
J.
,
Bai
,
M.
, and
Hussain
,
T.
,
2018
, “
Effect of Particle and Carbide Grain Sizes on a HVOAF WC–Co–Cr Coating for the Future Application on Internal Surfaces: Microstructure and Wear
,”
J. Therm. Spray Technol.
,
27
(
1–2
), pp.
207
219
. 10.1007/s11666-017-0669-8
7.
Ding
,
Y.
,
Hussain
,
T.
, and
McCartney
,
D. G.
,
2015
, “
High-Temperature Oxidation of HVOF Thermally Sprayed NiCr–Cr3C2 Coatings: Microstructure and Kinetics
,”
J. Mater. Sci.
,
50
(
20
), pp.
6808
6821
. 10.1007/s10853-015-9238-z
8.
Bobzin
,
K.
,
Zhao
,
L.
,
Öte
,
M.
,
Königstein
,
T.
, and
Steeger
,
M.
,
2018
, “
Impact Wear of an HVOF-Sprayed Cr3C2–NiCr Coating
,”
Int. J. Refract. Met. Hard Mater.
,
70
, pp.
191
196
. 10.1016/j.ijrmhm.2017.10.011
9.
Zhou
,
W.
,
Zhou
,
K.
,
Deng
,
C.
,
Zeng
,
K.
, and
Li
,
Y.
,
2017
, “
High Temperature Wear Performance of HVOF-Sprayed Cr3C2–WC–NiCoCrMo and Cr3C2–NiCr Hardmetal Coatings
,”
Appl. Surf. Sci.
,
416
, pp.
33
44
. 10.1016/j.apsusc.2017.04.132
10.
Goyal
,
K.
,
Singh
,
H.
, and
Bhatia
,
R.
,
2018
, “
Hot Corrosion Behaviour of Carbon Nanotubes Reinforced Chromium Oxide Composite Coatings at Elevated Temperature
,”
Mater. Res. Express
,
5
(
11
), p.
116408
. 10.1088/2053-1591/aadc34
11.
Goyal
,
D. K.
,
Singh
,
H.
,
Kumar
,
H.
, and
Sahani
,
V.
,
2014
, “
Erosive Wear Study of HVOF Spray Cr3C2–NiCr Coated CA6NM Turbine Steel
,”
ASME J. Tribol.
,
136
(
4
), p.
041602
. 10.1115/1.4027621
12.
Venkatesh
,
L.
,
Venkataraman
,
B.
,
Tak
,
M.
,
Sivakumar
,
G.
,
Gundakaram
,
R. C.
,
Joshi
,
S. V.
, and
Samajdar
,
I.
,
2019
, “
Room Temperature and 600 °C Erosion Behaviour of Various Chromium Carbide Composite Coatings
,”
Wear
,
422–423
, pp.
44
53
. 10.1016/j.wear.2019.01.025
13.
Zhou
,
W.
,
Zhou
,
K.
,
Deng
,
C.
,
Zeng
,
K.
, and
Li
,
Y.
,
2017
, “
Hot Corrosion Behaviour of HVOF-Sprayed Cr3C2–NiCrMoNbAl Coating
,”
Surf. Coat. Technol.
,
309
, pp.
849
859
. 10.1016/j.surfcoat.2016.10.076
14.
Babu
,
P. S.
,
Rao
,
P. C.
,
Jyothirmayia
,
A.
,
Phani
,
P. S.
,
Krishna
,
L. R.
, and
Rao
,
D. S.
,
2018
, “
Evaluation of Microstructure, Property and Performance of Detonation Sprayed WC–(W,Cr)2C–Ni Coatings
,”
Surf. Coat. Technol.
,
335
, pp.
345
354
. 10.1016/j.surfcoat.2017.12.055
15.
Góral
,
A.
,
Żórawski
,
W.
, and
Makrenek
,
M.
,
2019
, “
The Effect of the Standoff Distance on the Microstructure and Mechanical Properties of Cold Sprayed Cr3C2–25(Ni20Cr) Coatings
,”
Surf. Coat. Technol.
,
361
, pp.
9
18
. 10.1016/j.surfcoat.2019.01.006
16.
Bitter
,
J.
,
1963
, “
A Study on the Erosion Phenomena: Part I
,”
Wear
,
6
(
1
), pp.
5
21
. 10.1016/0043-1648(63)90003-6
17.
Bitter
,
J.
,
1963
, “
A Study on the Erosion Phenomena: Part II
,”
Wear
,
6
(
3
), pp.
169
190
. 10.1016/0043-1648(63)90073-5
18.
Mathapati
,
M.
,
Ramesh
,
M. R.
, and
Doddamani
,
M.
,
2017
, “
High Temperature Erosion Behavior of Plasma Sprayed NiCrAlY/WC–Co/Cenosphere Coating
,”
Surf. Coat. Technol.
,
325
, pp.
98
106
. 10.1016/j.surfcoat.2017.06.033
19.
Shin
,
D.
, and
Hamed
,
A.
,
2018
, “
Influence of Micro-Structure on Erosion Resistance of Plasma Sprayed 7YSZ Thermal Barrier Coating Under Gas Turbine Operating Conditions
,”
Wear
,
396–397
, pp.
36
47
. 10.1016/j.wear.2017.11.005
20.
Ramesh
,
M. R.
,
Prakash
,
S.
,
Nath
,
S. K.
,
Sapra
,
P. K.
, and
Ventakraman
,
B.
,
2010
, “
Solid Particle Erosion of HVOF Sprayed WC–Co/NiCrFeSiB Coatings
,”
Wear
,
269
(
3–4
), pp.
197
205
. 10.1016/j.wear.2010.03.019
21.
Cheng
,
J. B.
,
Liang
,
X. B.
,
Chen
,
Y. X.
,
Wang
,
Z. H.
, and
Xu
,
B. S.
,
2013
, “
High-Temperature Erosion Resistance of FeBSiNb Amorphous Coatings Deposited by Arc Spraying for Boiler Applications
,”
J. Therm. Spray Technol.
,
22
(
5
), pp.
820
827
. 10.1007/s11666-012-9876-5
22.
Singh
,
P. K.
, and
Mishra
,
S. B.
,
2020
, “
Studies on Solid Particle Erosion Behaviour of D-Gun Sprayed WC–Co, Stellite 6 and Stellite 21 Coatings on SAE213-T12 Boiler Steel at 400 °C Temperature
,”
Surf. Coat. Technol.
,
385
. 10.1016/j.surfcoat.2020.125353
23.
Alidokht
,
S. A.
,
Vo
,
P.
,
Yue
,
S.
, and
Chormik
,
R. R.
,
2017
, “
Erosive Wear Behavior of Cold-Sprayed Ni–WC Composite Coating
,”
Wear
,
376–377
, pp.
566
577
. 10.1016/j.wear.2017.01.052
You do not currently have access to this content.