Abstract

The 3D rough surface modeling and contact analysis is a difficult problem in the study of rough surface contact. In this paper, a new method for reconstruction and contact analysis of asperities on 3D rough surfaces is proposed based on real rough surfaces. Watershed algorithm is used to segment and determine the area of asperities on the rough surface. According to the principle of minimum mean square error, ellipsoid fitting is carried out on asperities. Based on the elastic-plastic contact model of a single ellipsoidal asperity, a stable and efficient method for 3D rough surface contact analysis and calculation is proposed. Compared with existing calculating methods, the present method has the following characteristics: (1) the constructed surface asperity is closer to the real asperity in contact, and the calculation of asperity parameters has better stability under different sampling intervals and (2) the contact pressure, contact area, and other contact parameters of the 3D rough surface are calculated with high accuracy and efficiency, and the calculation convergence is desirable. The reconstruction and contact analysis method of the 3D rough surface asperity proposed in this paper provides a more accurate reconstruction and calculation method for the study of contact fatigue life and wear failure of rough surfaces.

References

References
1.
Guillermo
,
E.
, and
Morales
,
E.
,
2018
, “
A Model for Rolling Bearing Life With Surface and Subsurface Survival-Tribological Effects
,”
Wear
,
58
(
1
), pp.
133
142
. 10.1080/10402004.2015.1025932
2.
Liu
,
H.
,
Zhu
,
C.
,
Zhang
,
Y.
,
Wang
,
Z.
, and
Song
,
C.
,
2016
, “
Tribological Evaluation of a Coated Spur Gear Pair
,”
Tribol. Int.
,
99
(
1
), pp.
117
126
. 10.1016/j.triboint.2016.03.014
3.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
634
. 10.1243/PIME_PROC_1970_185_069_02
4.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
. 10.1115/1.3261348
5.
Zhao
,
Y.
,
Lv
,
Y. M.
, and
Jiang
,
J. Z.
,
2003
, “
New Elastic-Plastic Model for the Contact of Rough Surface
,”
J. Mech. Eng.
,
43
(
3
), pp.
95
101
. 10.3901/JME.2007.03.095
6.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
. 10.1080/10402000308982641
7.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of ElastoPlastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
. 10.1115/1.1866166
8.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
. 10.1016/j.triboint.2005.09.001
9.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2002
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
(
2
), pp.
367
376
. 10.1115/1.1403458
10.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2012
, “
Asperity Micro-Contact Models as Applied to the Deformation of Rough Line Contact
,”
Tribol. Int.
,
52
(
1
), pp.
61
74
. 10.1016/j.triboint.2012.02.026
11.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2014
, “
On the Contact of Curved Rough Surfaces: Contact Behavior and Predictive Formulas
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111004
. 10.1115/1.4028426
12.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. D.
,
1979
, “
Strongly Anisotropic Rough Surface
,”
ASME J. Tribol.
,
101
, pp.
15
20
. 10.1115/1.3453271
13.
Chandrasekar
,
S.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
,
2012
, “
An Improved Model of Asperity Interaction in Normal Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011025
. 10.1115/1.4007142
14.
Greenwood
,
J. A.
, and
Wu
,
J. J.
,
2001
, “
Surface Roughness and Contact: An Apology
,”
Meccanica
,
36
(
6
), pp.
617
630
. 10.1023/A:1016340601964
15.
Greenwood
,
J. A.
,
2006
, “
A Simplified Elliptic Model of Rough Surface Contact
,”
Wear
,
261
(
2
), pp.
191
200
. 10.1016/j.wear.2005.09.031
16.
Pawlus
,
P.
, and
Zelasko
,
W.
,
2012
, “
The Importance of Sampling Interval for Rough Contact Mechanics
,”
Wear
,
276
(
1
), pp.
121
129
. 10.1016/j.wear.2011.12.015
17.
Kalin
,
M.
, and
Pogačnik
,
A.
,
2013
, “
Criteria and Properties of the Asperity Peaks on 3D Engineering Surfaces
,”
Wear
,
308
(
1–2
), pp.
95
104
. 10.1016/j.wear.2013.09.010
18.
Wen
,
Y.
,
Tang
,
J.
,
Zhou
,
W.
, and
Zhu
,
C.
,
2018
, “
An Improved Simplified Model of Rough Surface Profile
,”
Tribol. Int.
,
125
(
1
), pp.
75
84
. 10.1016/j.triboint.2018.04.025
19.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1995
, “
Comparison of Surface Roughness Measurements by Stylus Profiler, AFM and Non-Contact Optical Profiler
,”
Wear
,
190
(
1
), pp.
76
88
. 10.1016/0043-1648(95)06697-7
20.
Aramaki
,
H.
,
Cheng
,
H. S.
, and
Chung
,
Y. W.
,
1993
, “
The Contact Between Rough Surfaces With Longitudinal Texture Part I: Average Contact Pressure and Real Contact Area
,”
ASME J. Tribol.
,
115
(
3
), pp.
419
424
. 10.1115/1.2921653
21.
Ciulli
,
E.
,
Ferreira
,
L. A.
,
Pugliese
,
G.
, and
Tavares
,
S. M. O.
,
2008
, “
Rough Contacts Between Actual Engineering Surfaces Part I: Simple Models for Roughness Description
,”
Wear
,
264
(
11–12
), pp.
1105
1115
. 10.1016/j.wear.2007.08.024
22.
Pugliese
,
G.
,
Tavares
,
S. M. O.
,
Ciulli
,
E.
, and
Ferreira
,
L. A.
,
2008
, “
Rough Contacts Between Actual Engineering Surfaces Part II. Contact Mechanics
,”
Wear
,
264
(
11–12
), pp.
1116
1128
. 10.1016/j.wear.2007.08.027
23.
Hanaor
,
D.
,
Gan
,
Y.
, and
Einav
,
I.
,
2015
, “
Contact Mechanics of Fractal Surfaces by Spline Assisted Discretization
,”
Int. J. Solids Struct.
,
59
(
1
), pp.
121
131
. 10.1016/j.ijsolstr.2015.01.021
24.
Hanaor
,
D. A. H.
,
Gan
,
Y.
, and
Einav
,
I.
,
2016
, “
Static Friction at Fractal Interfaces
,”
Tribol. Int.
,
93
(
1
), pp.
229
238
. 10.1016/j.triboint.2015.09.016
25.
Kucharski
,
S.
, and
Starzynski
,
G.
,
2004
, “
Study of Contact of Rough Surfaces: Modeling and Experiment
,”
Wear
,
311
(
1–2
), pp.
167
179
. 10.1016/j.wear.2014.01.009
26.
Zhai
,
C.
,
Hanaor
,
D.
, and
Gan
,
Y.
,
2017
, “
Contact Stiffness of Multiscale Surfaces by Truncation Analysis
,”
Int. J. Mech. Sci.
,
131–132
(
1
), pp.
305
316
. 10.1016/j.ijmecsci.2017.07.018
27.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
. 10.1016/0021-9991(78)90023-2
28.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
(
2
), pp.
348
370
. 10.1016/0021-9991(90)90171-V
29.
Putignano
,
C.
,
Afferrante
,
L.
, and
Carbone
,
G.
,
2012
, “
A New Efficient Numerical Method for Contact Mechanics of Rough Surfaces
,”
Int. J. Solids Struct.
,
49
(
2
), pp.
338
343
. 10.1016/j.ijsolstr.2011.10.009
30.
Wang
,
Z.
,
Jin
,
X.
,
Zhou
,
Q.
,
Ai
X.
,
Keer
L. M.
, and
Wang
Q.
,
2013
, “
An Efficient Numerical Method With a Parallel Computational Strategy for Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems
,”
ASME J. Tribol.
,
135
(
3
), p.
031401
. 10.1115/1.4023948
31.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
,
122
(
1
), pp.
36
41
. 10.1115/1.555326
32.
Li
,
S.
,
2014
, “
A Boundary Element Model for Near Surface Contact Stresses of Rough Surfaces
,”
Comput. Mech.
,
54
(
3
), pp.
833
846
. 10.1007/s00466-014-1037-x
33.
Vincent
,
L.
, and
Soille
,
P.
,
1991
, “
Watersheds in Digital Space: An Efficient Algorithms Based on Immersion Simulation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
13
(
6
), pp.
583
598
. 10.1109/34.87344
34.
Sedaaghi
,
M. H.
,
1997
, “
Direct Implementation of Open-Closing in Morphological Filtering
,”
Electron. Lett.
,
33
(
3
), p.
198
. 10.1049/el:19970132
35.
Ying-Dong
,
Q.
,
Cheng-Song
,
C.
,
San-Ben
,
C.
, and
Jin-Quan
L.
,
2005
, “
A Fast Subpixel Edge Detection Method Using Sobel–Zernike Moments Operator
,”
Image Vision Comput.
,
23
(
1
), pp.
11
17
. 10.1016/j.imavis.2004.07.003
36.
McCool
,
J.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
(
1
), pp.
37
60
. 10.1016/0043-1648(86)90045-1
37.
Li
,
X. Y.
,
Liang
,
L.
, and
Wu
,
S. J.
,
2015
, “
A Numerical and Effective Method for the Contact Stress Calculation of Elliptical Partial Slip
,”
J. Mech. Sci. Technol.
,
29
(
2
), pp.
517
525
. 10.1007/s12206-015-0112-3
38.
Horng
,
J. H.
,
1998
, “
An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surface
,”
ASME J. Tribol.
,
120
(
1
), pp.
82
88
. 10.1115/1.2834194
39.
Wen
,
Y.
,
Tang
,
J.
,
Zhou
,
W.
, and
Zhu
C.
,
2018
, “
A new Elliptical Microcontact Model Considering Elastoplastic Deformation
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
232
(
11
), pp.
1352
1364
. 10.1177/1350650117753447
You do not currently have access to this content.