Abstract

It is necessary to use the thermal network method for thermal analysis of the bearing, but there are still some shortcomings. In this paper, a novel thermal network model of the bearing transient temperature is developed considering the thermal-fluid-solid coupling effects. First, the quasi-static analysis of the bearing is carried out considering the thermal expansion effect, and the heat generation, heat transfer, and heat dissipation are studied. Then, the coupling effects between the oil characteristics, heat generation, structure parameters, and temperature (thermal-fluid-solid) during the operation of the bearing are discussed, and the transient thermal network model of the bearing-shaft-bearing housing system is established. Test results indicate that the existing models (without thermal-fluid-solid coupling) have large temperature deviation, while the proposed model in this paper considering the thermal-fluid-solid coupling effects is much more accurate. Finally, the effects of rotational speed, load, oil temperature, and oil flowrate on the temperature rise are all achieved and discussed.

References

References
1.
Takabi
,
J.
, and
Khonsari
,
M. M.
,
2013
, “
Experimental Testing and Thermal Analysis of Ball Bearings
,”
Tribol. Int.
,
60
(
7
), pp.
93
103
. 10.1016/j.triboint.2012.10.009
2.
Höhn
,
B. R.
,
Michaelis
,
K.
, and
Kreil
,
O.
,
2006
, “
Influence of Surface Roughness on Pressure Distribution and Film Thickness in EHL-Contacts
,”
Tribol. Int.
,
39
(
12
), pp.
1719
1725
. 10.1016/j.triboint.2006.01.008
3.
Glovnea
,
R. P.
,
Olver
,
A. V.
, and
Spikes
,
H. A.
,
2005
, “
Experimental Investigation of the Effect of Speed and Load on Film Thickness in Elastohydrodynamic Contact
,”
Tribol. Trans.
,
48
(
3
), pp.
328
335
. 10.1080/05698190590970471
4.
Sakamoto
,
M.
,
Nishikawa
,
H.
, and
Kaneta
,
M.
,
2003
, “
Behaviour of Point Contact EHL Films Under Pulsating Loads
,”
Tribol. Ser.
,
43
(
43
), pp.
391
399
. 10.1016/S0167-8922(03)80066-4
5.
Nakahara
,
T.
, and
Yagi
,
K.
,
2007
, “
Influence of Temperature Distributions in EHL Film on its Thickness Under High Slip Ratio Conditions
,”
Tribol. Int.
,
40
(
4
), pp.
632
637
. 10.1016/j.triboint.2005.11.020
6.
Dowson
,
D.
, and
Higginson
,
G.
,
1959
, “
A Numerical Solution to the Elasto-Hydrodynamic Problem
,”
J. Mech. Eng. Sci.
,
1
(
1
), pp.
6
15
. 10.1243/JMES_JOUR_1959_001_004_02
7.
Jang
,
J. Y.
,
Khonsari
,
M. M.
, and
Bair
,
S.
,
2007
, “
On the Elastohydrodynamic Analysis of Shear-Thinning Fluids
,”
Proc. R. Soc. A
,
463
(
2088
), pp.
3271
3290
. 10.1098/rspa.2007.0062
8.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2008
, “
EHL Circular Contact Film Thickness Correction Factor for Shear-Thinning Fluids
,”
ASME J. Tribol.
,
130
(
4
), p.
041506
. 10.1115/1.2959115
9.
Forster
,
N. H.
,
Schrand
,
J. B.
, and
Gupta
,
P. K.
,
1992
, “
Viscoelastic Effects in MIL-L-7808-Type Lubricant, Part II: Experimental Data Correlations
,”
Tribol. Trans.
,
35
(
2
), pp.
275
280
. 10.1080/10402009208982118
10.
Bair
,
S.
,
Vergne
,
P.
, and
Querry
,
M.
,
2005
, “
A Unified Shear-Thinning Treatment of Both Film Thickness and Traction in EHD
,”
Tribol. Lett.
,
18
(
2
), pp.
145
152
. 10.1007/s11249-004-1770-y
11.
Ghosh
,
M. K.
, and
Gupta
,
K.
,
1998
, “
Thermal Effect in Hydrodynamic Lubrication of Line Contacts—Piezoviscous Effect Neglected
,”
Int. J. Mech. Sci.
,
40
(
6
), pp.
603
616
. 10.1016/S0020-7403(97)00082-9
12.
Echávarri Otero
,
J.
,
Lafont Morgado
,
P.
,
Chacón Tanarro
,
E.
,
de la Guerra Ochoa
,
E.
,
Díaz Lantada
,
A.
,
Munoz-Guijosa
,
J. M.
, and
Muñoz Sanz
,
J. L.
,
2011
, “
Analytical Model for Predicting the Friction Coefficient in Point Contacts With Thermal Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng. Part J
,
225
(
4
), pp.
181
191
. 10.1177/1350650111398848
13.
Shirzadegan
,
M.
,
Björling
,
M.
,
Almqvist
,
A.
, and
Larsson
,
R.
,
2016
, “
Low Degree of Freedom Approach for Predicting Friction in Elastohydrodynamically Lubricated Contacts
,”
Tribol. Int.
,
94
(
2
), pp.
560
570
. 10.1016/j.triboint.2015.10.010
14.
Echávarri Otero
,
J.
,
de la Guerra Ochoa
,
E.
,
Chacón Tanarro
,
E.
,
Díaz Lantada
,
A.
, and
Munoz-Guijosa
,
J. M.
,
2016
, “
Analytical Model for Predicting Friction in Line Contacts
,”
Lubr. Sci.
,
28
(
4
), pp.
189
205
. 10.1002/ls.1325
15.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
, 3rd ed.,
SKF Industries Inc.
,
Philadelphia
.
16.
Kim
,
K. S.
,
Lee
,
D. W.
,
Lee
,
S. M.
,
Lee
,
S. J.
, and
Hwang
,
J. H.
,
2015
, “
A Numerical Approach to Determine the Frictional Torque and Temperature of an Angular Contact Ball Bearing in a Spindle System
,”
Int. J. Precis. Eng. Manuf.
,
16
(
1
), pp.
135
142
. 10.1007/s12541-015-0017-1
17.
Stein
,
J. L.
, and
Tu
,
J. F.
,
1994
, “
A State-Space Model for Monitoring Thermally Induced Preload in Anti-Friction Spindle Bearings of High-Speed Machine Tools
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
3
), pp.
372
386
. 10.1115/1.2899232
18.
Jiang
,
S. Y.
, and
Mao
,
H. B.
,
2010
, “
Investigation of Variable Optimum Preload for a Machine Tool Spindle
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
19
28
. 10.1016/j.ijmachtools.2009.10.001
19.
Wang
,
L. Q.
,
Chen
,
G. C.
,
Gu
,
L.
, and
Zheng
,
D.
,
2007
, “
Study on Heat Generation of High-Speed Cylindrical Roller Bearings
,”
Lubr. Eng.
,
32
(
8
), pp.
8
11
.
20.
Lei
,
M. H.
,
Jiang
,
G. D.
,
Mei
,
X. S.
,
Ma
,
C.
, and
Yang
,
J.
,
2016
, “
Micro-Contact EHL Friction and Heat Generation Analysis of High Speed Ball Bearings
,”
J. Xi'an Jiaotong Univ.
,
50
(
4
), pp.
81
88
.
21.
Ma
,
F. B.
,
Li
,
Z. M.
,
Wu
,
B. J.
, and
An
,
Q.
,
2016
, “
An Accurate Calculation Method for Heat Generation Rate in Grease-Lubricated Spherical Roller Bearings
,”
Proc. Inst. Mech. Eng. Part J
,
230
(
4
), pp.
472
480
. 10.1177/1350650115604873
22.
Henao-Sepulveda
,
J. A.
,
Toledo-Quinones
,
M.
, and
Jia
,
Y.
,
2005
, “
Contactless Monitoring of Ball Bearing Temperature
,”
IEEE Instrumentation and Measurement Technology Conference Proceedings
,
2
, pp.
1571
1573
.
23.
Bossmanns
,
B.
, and
Tu
,
J. F.
,
2001
, “
A Power Flow Model for High Speed Motorized Spindles—Heat Generation Characterization
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
494
505
. 10.1115/1.1349555
24.
Bossmanns
,
B.
, and
Tu
,
J. F.
,
1999
, “
A Thermal Model for High Speed Motorized Spindles
,”
Int. J. Mach. Tools Manuf.
,
39
(
9
), pp.
1345
1366
. 10.1016/S0890-6955(99)00005-X
25.
Harris
,
T. A.
,
1984
,
Rolling Bearing Analysis
, 2nd ed.,
John Wiley and Sons
,
New York
.
26.
Tarawneh
,
C. M.
,
Cole
,
K. D.
,
Wilson
,
B. M.
, and
Alnaimat
,
F.
,
2008
, “
Experiments and Models for the Thermal Response of Railroad Tapered-Roller Bearings
,”
Int. J. Heat Mass Transfer
,
51
(
25
), pp.
5794
5803
. 10.1016/j.ijheatmasstransfer.2008.05.011
27.
Huang
,
D. Y.
,
Hong
,
J.
,
Zhang
,
J. H.
,
Wu
,
D.
, and
Li
,
C.
,
2012
, “
Thermal Resistance Network for Solving Temperature Field in Spindle System
,”
Hsi-An Chiao Tung Ta Hsueh/J. Xi'an Jiaotong Univ.
,
46
(
5
), pp.
63
66
.
28.
Pouly
,
F.
,
Changenet
,
C.
,
Ville
,
F.
,
Velex
,
P.
, and
Damiens
,
B.
,
2010
, “
Investigations on Power Losses and Thermal Behaviour of Rolling Element Bearings: Transient Aspects
,”
Proc. Inst. Mech. Eng. Part J
,
224
(
9
), pp.
925
933
. 10.1243/13506501JET695
29.
Ma
,
F.
,
Li
,
Z.
,
Qiu
,
S.
,
Wu
,
B.
, and
An
,
Q.
,
2016
, “
Transient Thermal Analysis of Grease-Lubricated Spherical Roller Bearings
,”
Tribol. Int.
,
93
(
1
), pp.
115
123
. 10.1016/j.triboint.2015.09.004
30.
Zheng
,
D. X.
, and
Chen
,
W. F.
,
2017
, “
Thermal Performances on Angular Contact Ball Bearing of High-Speed Spindle Considering Structural Constraints Under Oil-Air Lubrication
,”
Tribol. Int.
,
109
(
5
), pp.
593
601
. 10.1016/j.triboint.2017.01.035
31.
Ai
,
S. Y.
,
Wang
,
W. Z.
,
Wang
,
Y. L.
, and
Zhao
,
Z.
,
2015
, “
Temperature Rise of Double-Row Tapered Roller Bearings Analyzed With the Thermal Network Method
,”
Tribol. Int.
,
87
(
7
), pp.
11
22
. 10.1016/j.triboint.2015.02.011
32.
Neurouth
,
A.
,
Changenet
,
C.
,
Ville
,
F.
, and
Arnaudon
,
A.
,
2014
, “
Thermal Modeling of a Grease Lubricated Thrust Ball Bearing
,”
Proc. Inst. Mech. Eng. Part J
,
228
(
11
), pp.
1266
1275
. 10.1177/1350650114526387
33.
Min
,
X.
,
Shuyun
,
J.
, and
Ying
,
C.
,
2007
, “
An Improved Thermal Model for Machine Tool Bearings
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
53
62
. 10.1016/j.ijmachtools.2006.02.018
34.
Ai
,
S. Y.
,
2015
, “
Study on Temperature Distribution and Lubrication Performance of Rolling Bearings
,”
Doctoral thesis
,
Beijing Institute of Technology
.
35.
Yan
,
K.
,
Hong
,
J.
,
Zhang
,
J. H.
,
Mi
,
W.
, and
Wu
,
W.
,
2016
, “
Thermal-Deformation Coupling in Thermal Network for Transient Analysis of Spindle-Bearing System
,”
Int. J. Therm. Sci.
,
104
(
6
), pp.
1
12
. 10.1016/j.ijthermalsci.2015.12.007
36.
Wen
,
B. G.
,
Ren
,
H. J.
,
Dang
,
P. F.
,
Hao
,
X.
, and
Han
,
Q.
,
2018
, “
Measurement and Calculation of Oil Film Thickness in a Ball Bearing
,”
Ind. Lubr. Tribol.
,
70
(
8
), pp.
1500
1508
. 10.1108/ILT-11-2016-0265
37.
Deng
,
S. E.
,
Jia
,
Q. Y.
, and
Xue
,
J. X.
,
2014
,
Design Principle of Rolling Bearings
, 2nd ed.,
Standards Press of China
,
Beijing
.
38.
Changenet
,
C.
, and
Velex
,
P.
,
2007
, “
A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
128
133
. 10.1115/1.2403727
39.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
. 10.1115/1.2920588
40.
Jian
,
L.
,
Kim
,
D. H.
, and
Lee
,
C. M.
,
2015
, “
A Study on the Thermal Characteristics and Experiments of High-Speed Spindle for Machine Tools
,”
Int. J. Precis. Eng. Manuf.
,
16
(
2
), pp.
293
299
. 10.1007/s12541-015-0039-8
41.
Yan
,
K.
,
Wang
,
N.
,
Zhai
,
Q.
,
Zhu
,
Y.
,
Zhang
,
J.
, and
Niu
,
Q.
,
2015
, “
Theoretical and Experimental Investigation on the Thermal Characteristics of Double-Row Tapered Roller Bearings of High Speed Locomotive
,”
Int. J. Heat Mass Transfer
,
84
(
5
), pp.
1119
1130
. 10.1016/j.ijheatmasstransfer.2014.11.057
42.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
. 10.1016/0017-9310(75)90243-4
43.
Hao
,
X.
,
Gu
,
X.
,
Zhou
,
X.
,
Liao
,
X.
, and
Han
,
Q.
,
2019
, “
Distribution Characteristics of Stress and Displacement of Rings of Cylindrical Roller Bearing
,”
Proc. Inst. Mech. Eng. Part C
,
233
(
12
), pp.
4348
4358
. 10.1177/0954406218820551
44.
Fernandez Martinez
,
R.
,
Lostado Lorza
,
R.
,
Santos Delgado
,
A. A.
, and
Piedra Pullaguari
,
N. O.
,
2018
, “
Optimizing Presetting Attributes by Softcomputing Techniques to Improve Tapered Roller Bearings Working Conditions
,”
Adv. Eng. Software
,
123
(
9
), pp.
13
24
. 10.1016/j.advengsoft.2018.05.005
You do not currently have access to this content.