Abstract

In order to clarify the effect of thermal conductivity on non-Newtonian thermal elastohydrodynamic lubrication (EHL) in the point contact with longitudinal roughness on one surface or on both surfaces, numerical calculations are carried out. The contact is formed by ceramics and steel. The surface shapes of both contact solids are investigated separately. It was found that the pressure at ridges shows lower than that at grooves when the speed of a material with low thermal conductivity is faster than that of a material with high thermal conductivity. In the opposite case, such a phenomenon never occurs. This abnormal pressure variation is largely affected by the combination of contact materials and running conditions.

References

References
1.
Yang
,
P.
,
Qu
,
S.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
. 10.1115/1.1332399
2.
Kaneta
,
M.
, and
Yang
,
P.
,
2003
, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
731
738
. 10.1115/1.1540121
3.
Kaneta
,
M.
,
Yang
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2015
, “
Fundamentals of Thermal Elastohydrodynamic Lubrication in Si3N4 and Steel Circular Contacts
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
229
(
8
), pp.
929
939
. 10.1177/1350650114565679
4.
Kaneta
,
M.
,
Sperka
,
P.
,
Yang
,
P.
,
Krupka
,
I.
,
Yang
,
P.
, and
Hartl
,
M.
,
2018
, “
Thermal Elastohydrodynamic Lubrication of Ceramic Materials
,”
STLE Trans.
,
61
(
5
), pp.
869
879
. 10.1080/10402004.2018.1437492
5.
Cameron
,
A.
,
1958
, “
The Viscosity Wedge
,”
ASLE Trans.
,
1
(
2
), pp.
248
253
. 10.1080/05698195808972337
6.
Björling
,
M.
,
Isaksson
,
P.
,
Marklund
,
P.
, and
Larsson
,
R.
,
2012
, “
The Influence of DLC on EHL Friction Coefficient
,”
Tribol. Lett.
,
47
(
2
), pp.
285
294
. 10.1007/s11249-012-9987-7
7.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
. 10.1007/s11249-013-0286-8
8.
Habchi
,
W.
,
2014
, “
A Numerical Model for the Solution of Thermal Elastohydrodynamic Lubrication in Coated Circular Contacts
,”
Tribol. Int.
,
73
, pp.
57
68
. 10.1016/j.triboint.2014.01.002
9.
Krupka
,
I.
,
Hartl
,
M.
,
Matsuda
,
K.
,
Nishikawa
,
H.
,
Wang
,
J.
,
Guo
,
F.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2019
, “
Deformation of Rough Surfaces in Point EHL Contacts
,”
Tribol. Lett.
,
67
(
2
), p.
33
. 10.1007/s11249-019-1145-z
10.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Dimples on Tribo-Characteristics in Non-Newtonian Thermal Elastohydrodynamic Lubrication Point Contacts With Different Mechanical and Thermal Properties
,”
ASME J. Tribol.
,
142
(
1
), p.
041601
. 10.1115/1.4045638
11.
Bair
,
S.
,
2004
, “
Actual Eyring Models for Thixotropy and Shear-Thinning: Experimental Validation and Application to EHD
,”
ASME J. Tribol.
,
126
(
4
), pp.
728
732
. 10.1115/1.1792693
12.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
. 10.1016/j.triboint.2009.10.002
13.
Habchi
,
W.
, and
Bair
,
S.
,
2013
, “
Quantitative Compressibility Effects in Thermal Elastohydrodynamic Circular Contacts
,”
ASME J. Tribol.
,
135
(
1
), p.
011502
. 10.1115/1.4023082
14.
Larsson
,
R.
,
Larsson
,
P. O.
,
Eriksson
,
E.
,
Sjöberg
,
M.
, and
Höglund
,
E.
,
2000
, “
Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
214
(
1
), pp.
17
27
. 10.1243/1350650001542981
15.
Larsson
,
R.
, and
Andersson
,
O.
,
2000
, “
Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
214
(
4
), pp.
337
342
. 10.1243/1350650001543223
16.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2009
, “
Traction in EHL Line Contacts Using Free Volume Pressure–Viscosity Relationship With Thermal and Shear-Thinning Effects
,”
ASME J. Tribol.
,
131
(
1
), p.
011503
. 10.1115/1.3002331
17.
Liu
,
X.
,
Jiang
,
M.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
. 10.1115/1.1843161
18.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
. 10.1115/1.2920308
19.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
Amsterdam
.
20.
Ohno
,
N.
,
2007
, “
High-Pressure Behavior of Toroidal CVT Fluid for Automobile
,”
Tribol. Int.
,
40
(
2
), pp.
233
238
. 10.1016/j.triboint.2005.09.015
21.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
(
1
), p.
22
. 10.1007/s11249-018-1133-8
22.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
. 10.1016/j.triboint.2019.105970
23.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
, p.
106059
. 10.1016/j.triboint.2019.106059
You do not currently have access to this content.