Abstract

The performances of the tribo-pairs are greatly influenced by introducing the grooved surfaces. Developments of the newer type of lubricants have made a great impact on the performance of fluid film bearings. This article investigates the non-Newtonian behavior of electrorheological lubricant on the performance of grooved hybrid spherical journal bearing. The effect of different arrangements of grooves, i.e., partially grooved or fully grooved on the bearing surface, has been studied. The finite element method is used to numerically simulate the results. Furthermore, a parametric study is performed for optimizing the groove attributes. The present work demonstrates that the different grooved arrangements have a substantial influence on the bearing performance. It is revealed that the provision of grooves on the bearing surface decreases frictional losses and enhances the stiffness coefficients of the bearing. Furthermore, numerically simulated results indicate that the electrorheological lubricant enhances the value of minimum fluid film thickness and the stiffness coefficients (S¯xxandS¯yy) of spherical hybrid journal bearing. Improved bearing performance can be achieved by using the optimized grooved attributes together with the electrorheological lubricant.

References

References
1.
Gad
,
A. M.
,
Nemat-Alla
,
M. M.
,
Khalil
,
A. A.
, and
Nasr
,
A. M.
,
2006
, “
On the Optimum Groove Geometry for Herringbone Grooved Journal Bearings
,”
ASME J. Tribol.
,
128
(
3
), pp.
585
593
. 10.1115/1.2197524
2.
Hirs
,
G. G.
,
1965
, “
The Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings
,”
ASLE Trans.
,
8
(
3
), pp.
296
305
. 10.1080/05698196508972102
3.
Vohr
,
J. H.
, and
Chow
,
C. Y.
,
1965
, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
568
576
. 10.1115/1.3650607
4.
Khonsari
,
M. M.
,
1987
, “
A Review of Thermal Effects in Hydrodynamic Bearings. Part II: Journal Bearings
,”
ASLE Trans.
,
30
(
1
), pp.
26
33
. 10.1080/05698198708981726
5.
Sep
,
J.
,
Galda
,
L.
,
Oliwa
,
R.
, and
Dudek
,
K.
,
2020
, “
Surface Layer Analysis of Helical Grooved Journal Bearings After Abrasive Tests
,”
Wear
,
448–449
, p.
203233
. 10.1016/j.wear.2020.203233
6.
Kawabata
,
N.
,
Ozawa
,
Y.
,
Kamaya
,
S.
, and
Miyake
,
Y.
,
1989
, “
Static Characteristics of the Regular and Reversible Rotation Type Herringbone Grooved Journal Bearing
,”
ASME J. Tribol.
,
111
(
3
), pp.
484
490
. 10.1115/1.3261955
7.
Yoshimoto
,
S.
,
Ito
,
Y.
, and
Takahashi
,
A.
,
1999
, “
Pumping Characteristics of a Herringbone-Grooved Journal Bearing Functioning as a Viscous Vacuum Pump
,”
ASME J. Tribol.
,
122
(
1
), pp.
131
136
. 10.1115/1.555371
8.
Jang
,
G. H.
,
Lee
,
S. H.
, and
Kim
,
H. W.
,
2005
, “
Finite Element Analysis of the Coupled Journal and Thrust Bearing in a Computer Hard Disk Drive
,”
ASME J. Tribol.
,
128
(
2
), pp.
335
340
. 10.1115/1.2162918
9.
Ji
,
J.
,
Fu
,
Y.
, and
Bi
,
Q.
,
2014
, “
Influence of Geometric Shapes on the Hydrodynamic Lubrication of a Partially Textured Slider With Micro-Grooves
,”
ASME J. Tribol.
,
136
(
4
), p.
041702
. 10.1115/1.4027633
10.
Whipple
,
R. T. P.
,
1958
, “
The Inclined Groove Bearing
,” No. AERE-T/R-622(Rev.) United Kingdom BIS DTIE English, United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, Harwell, Berks, England.
11.
Jang
,
G. H.
, and
Chang
,
D. I.
,
1999
, “
Analysis of a Hydrodynamic Herringbone Grooved Journal Bearing Considering Cavitation
,”
ASME J. Tribol.
,
122
(
1
), pp.
103
109
. 10.1115/1.555333
12.
Zirkelback
,
N.
, and
San Andrés
,
L.
,
1998
, “
Finite Element Analysis of Herringbone Groove Journal Bearings: A Parametric Study
,”
ASME J. Tribol.
,
120
(
2
), pp.
234
240
. 10.1115/1.2834415
13.
Kato
,
T.
, and
Obara
,
S.
,
1996
, “
Improvement in Dynamic Characteristics of Circular Journal Bearings by Means of Longitudinal Microgrooves
,”
Tribol. Trans.
,
39
(
2
), pp.
462
468
. 10.1080/10402009608983553
14.
Kang
,
K.
,
Rhim
,
Y.
, and
Sung
,
K.
,
1996
, “
A Study of the Oil-Lubricated Herringbone-Grooved Journal Bearing—Part 1: Numerical Analysis
,”
ASME J. Tribol.
,
118
(
4
), pp.
906
911
. 10.1115/1.2831627
15.
Jang
,
G. H.
, and
Yoon
,
J. W.
,
2003
, “
Stability Analysis of a Hydrodynamic Journal Bearing With Rotating Herringbone Grooves
,”
ASME J. Tribol.
,
125
(
2
), pp.
291
300
. 10.1115/1.1506326
16.
Fesanghary
,
M.
, and
Khonsari
,
M. M.
,
2013
, “
On the Optimum Groove Shapes for Load-Carrying Capacity Enhancement in Parallel Flat Surface Bearings: Theory and Experiment
,”
Tribol. Int.
,
67
(
4
), pp.
254
262
. 10.1016/j.triboint.2013.08.001
17.
Farjoud
,
A.
,
Vahdati
,
N.
, and
Fah
,
Y. F.
,
2008
, “
Mathematical Model of Drum-Type MR Brakes Using Herschel-Bulkley Shear Model
,”
J. Intell. Mater. Syst. Struct.
,
19
(
5
), pp.
565
572
. 10.1177/1045389X07077851
18.
Furusho
,
J.
,
Sakaguchi
,
M.
,
Takesue
,
N.
, and
Koyanagi
,
K. i.
,
2002
, “
Development of ER Brake and Its Application to Passive Force Display
,”
J. Intell. Mater. Syst. Struct.
,
13
(
7–8
), pp.
425
429
. 10.1106/104538902030340
19.
Li
,
W. H.
,
Yao
,
G. Z.
,
Chen
,
G.
,
Yeo
,
S. H.
, and
Yap
,
F. F.
,
2000
, “
Testing and Steady State Modeling of a Linear MR Damper Under Sinusoidal Loading
,”
Smart Mater. Struct.
,
9
(
1
), pp.
95
102
. 10.1088/0964-1726/9/1/310
20.
Kamath
,
G. M.
,
Hurt
,
M. K.
, and
Wereley
,
N. M.
,
1996
, “
Analysis and Testing of Bingham Plastic Behavior in Semi-Active Electrorheological Fluid Dampers
,”
Smart Mater. Struct.
,
5
(
5
), pp.
576
590
. 10.1088/0964-1726/5/5/007
21.
Nikolakopoulos
,
G.
,
and Papadopoulos
,
P.
, and
A
,
C.
,
1998
, “
Controllable High Speed Journal Bearings, Lubricated With Electro-Rheological Fluids. An Analytical and Experimental Approach
,”
Tribol. Int.
,
31
(
5
), pp.
225
234
. 10.1016/S0301-679X(98)00025-5
22.
Bompos
,
D. A.
, and
Nikolakopoulos
,
P. G.
,
2016
, “
Rotordynamic Analysis of a Shaft Using Magnetorheological and Nanomagnetorheological Fluid Journal Bearings
,”
Tribol. Trans.
,
59
(
1
), pp.
108
118
. 10.1080/10402004.2015.1050137
23.
Barber
,
D. E.
, and
Carlson
,
J. D.
,
2010
, “
Performance Characteristics of Prototype MR Engine Mounts Containing Glycol MR Fluids
,”
J. Intell. Mater. Syst. Struct.
,
21
(
15
), pp.
1509
1516
. 10.1177/1045389X09351957
24.
Choi
,
S.-B. S.
, and
Song
,
H.-J. H.
,
2002
, “
Vibration Control of a Passenger Vehicle Utilizing a Semi-Active ER Engine Mount
,”
Vehicle Syst. Dyn.
,
37
(
3
), pp.
193
216
. 10.1076/vesd.37.3.193.3534
25.
Choi
,
S.-B.
,
Hong
,
S.-R.
,
Cheong
,
C.-C.
, and
Park
,
Y.-K.
,
1999
, “
Comparison of Field-Controlled Characteristics Between ER and MR Clutches
,”
J. Intell. Mater. Syst. Struct.
,
10
(
8
), pp.
615
619
. 10.1106/217G-CEUN-Q710-AB60
26.
Neelakantan
,
V. A.
, and
Washington
,
G. N.
,
2005
, “
Modeling and Reduction of Centrifuging in Magnetorheological (MR) Transmission Clutches for Automotive Applications
,”
J. Intell. Mater. Syst. Struct.
,
16
(
9
), pp.
703
711
. 10.1177/1045389X05054329
27.
Kollias
,
A.
, and
Dimarogonas
,
A. D.
,
1994
,
Electrorheological Fluid Flow in Partial Journal Bearings
,
ASME
,
New York
, Vol.
205
, pp.
69
69
.
28.
Wada
,
S.
,
Hayashi
,
H.
, and
Haga
,
K.
,
1973
, “
Behavior of a Bingham Solid in Hydrodynamic Lubrication: Part 1, General Theory
,”
Bull. JSME
,
16
(
92
), pp.
422
431
. 10.1299/jsme1958.16.422
29.
Jang
,
S.
, and
Tichy
,
J. A.
,
1997
, “
Internal Damper Characteristics of Rotor System With Submerged ER Fluid Journal Bearing
,”
Int. J. Rotat. Mach.
,
3
(
1
), pp.
61
71
. 10.1155/S1023621X97000079
30.
Peng
,
J.
, and
Zhu
,
K.-Q.
,
2006
, “
Effects of Electric Field on Hydrodynamic Characteristics of Finite-Length ER Journal Bearings
,”
Tribol. Int.
,
39
(
6
), pp.
533
540
. 10.1016/j.triboint.2005.03.017
31.
Bompos
,
D. A.
, and
Nikolakopoulos
,
P. G.
,
2016
, “
Experimental and Analytical Investigations of Dynamic Characteristics of Magnetorheological and Nanomagnetorheological Fluid Film Journal Bearing
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031012
. 10.1115/1.4032900
32.
Laukiavich
,
C.
,
Braun
,
M.
, and
Chandy
,
A.
,
2014
, “
A Comparison Between the Performance of Ferro- and Magnetorheological Fluids in a Hydrodynamic Bearing
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
6
), pp.
649
666
. 10.1177/1350650114523753
33.
Wang
,
J.
, and
Meng
,
G.
,
2001
, “
Magnetorheological Fluid Devices: Principles, Characteristics and Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng., Part L
,
215
(
3
), pp.
165
174
.
34.
Chiang
,
T.
,
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1967
, “
Spherical Squeeze-Film Hybrid Bearing With Small Steady-State Radial Displacement
,”
ASME J. Lubr. Technol.
,
89
(
3
), pp.
254
262
. 10.1115/1.3616962
35.
Goenka
,
P. K.
, and
Booker
,
J. F.
,
1980
, “
Spherical Bearings: Static and Dynamic Analysis Via the Finite Element Method
,”
ASME J. Lubr. Technol.
,
102
(
3
), pp.
308
318
. 10.1115/1.3251522
36.
Dowson
,
D.
, and
Taylor
,
C. M.
,
1967
, “
Fluid-Inertia Effects in Spherical Hydrostatic Thrust Bearings
,”
ASLE Trans.
,
10
(
3
), pp.
316
324
. 10.1080/05698196708972189
37.
Rowe
,
W. B.
, and
Stout
,
K. J.
,
1971
, “
Design Data and a Manufacturing Technique for Spherical Hydrostatic Bearings in Machine Tool Applications
,”
Int. J. Mach. Tool Des. Res.
,
11
(
4
), pp.
293
307
. 10.1016/0020-7357(71)90012-6
38.
San Andres
,
L.
,
1994
, “
Dynamic Force Response of Spherical Hydrostatic Journal Bearings for Cryogenic Applications
,”
Tribol. Trans.
,
37
(
3
), pp.
463
470
. 10.1080/10402009408983318
39.
Xu
,
C.
, and
Jiang
,
S.
,
2015
, “
Analysis of the Static Characteristics of a Self-Compensation Hydrostatic Spherical Hinge
,”
ASME J. Tribol.
,
137
(
4
), p.
044503
. 10.1115/1.4030712
40.
O'Donoghue
,
J. P.
,
1971
, “
Design of Fitted Spherical Hydrostatic Bearings
,”
Tribology
,
4
(
3
), pp.
158
163
. 10.1016/0041-2678(71)90029-7
41.
Gupta
,
J. L.
, and
Deheri
,
G. M.
,
1996
, “
Effect of Roughness on the Behavior of Squeeze Film in a Spherical Bearing
,”
Tribol. Trans.
,
39
(
1
), pp.
99
102
. 10.1080/10402009608983508
42.
Leung
,
P. S.
,
Craighead
,
I. A.
, and
Wilkinson
,
T. S.
,
1989
, “
An Analysis of the Steady State and Dynamic Characteristics of a Spherical Hydrodynamic Journal Bearing
,”
ASME J. Tribol.
,
111
(
3
), pp.
459
467
. 10.1115/1.3261947
43.
Yacout
,
A. W.
,
Ismaeel
,
A. S.
, and
Kassab
,
S. Z.
,
2007
, “
The Combined Effects of the Centripetal Inertia and the Surface Roughness on the Hydrostatic Thrust Spherical Bearings Performance
,”
Tribol. Int.
,
40
(
3
), pp.
522
532
. 10.1016/j.triboint.2006.05.007
44.
Dapeng
,
C.
,
Yingxue
,
Y.
, and
Dongli
,
Q.
,
2010
, “
Study on the Dynamic Characteristics of a New Type Externally Pressurized Spherical Gas Bearing With Slot–Orifice Double Restrictors
,”
Tribol. Int.
,
43
(
4
), pp.
822
830
. 10.1016/j.triboint.2009.11.009
45.
Bassani
,
R.
, and
Piccigallo
,
B.
,
1992
,
Hydrostatic Lubrication
,
Elsevier
,
New York
.
46.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
. 10.1016/S0020-7403(62)80038-1
47.
Morsi
,
S. A.
,
1972
, “
Passively and Actively Controlled Externally Pressurized Oil-Film Bearings
,”
ASME J. Lubr. Technol.
,
94
(
1
), pp.
56
63
. 10.1115/1.3451635
48.
Metman
,
K. J.
,
Muijderman
,
E. A.
,
van Heijningen
,
G. J. J.
, and
Halemane
,
D. M.
,
1986
, “
Load Capacity of Multi-Recess Hydrostatic Journal Bearings at High Eccentricities
,”
Tribol. Int.
,
19
(
1
), pp.
29
34
. 10.1016/0301-679X(86)90092-7
49.
Hong
,
G.
,
Xinmin
,
L.
, and
Shaoqi
,
C.
,
2009
, “
Theoretical and Experimental Study on Dynamic Coefficients and Stability for a Hydrostatic/Hydrodynamic Conical Bearing
,”
ASME J. Tribol.
,
131
(
4
), p.
041701
. 10.1115/1.3176991
You do not currently have access to this content.