Abstract

The structural parameters of 23 ionic liquids were calculated by the Hartree–Fock ab initio method. The relationship between the antiwear properties of ionic liquids dissolved in dimethyl sulfoxide and the structural parameters of the ionic liquids was studied using multiple linear regression analysis. A quantitative structure tribo-ability relationship model with good fitting and prediction ability was established. The results show that entropy is the most important structural parameter affecting the antiwear performance of ionic liquid-dimethyl sulfoxide systems. The entropy of the ionic liquid is related to the hydrogen bonding in the system, and an orderly arrangement of this hydrogen bonding is beneficial in terms of improving antiwear performance.

References

1.
Trujillo-Rodríguez
,
M. J.
,
Nan
,
H.
,
Varona
,
M.
,
Emaus
,
M. N.
,
Souza
,
I. D.
, and
Anderson
,
J. L.
,
2018
, “
Advances of Ionic Liquids in Analytical Chemistry
,”
Anal. Chem.
,
91
(
1
), pp.
505
531
. 10.1021/acs.analchem.8b04710
2.
Sippel
,
P.
,
Lunkenheimer
,
P.
,
Krohns
,
S.
,
Thoms
,
E.
, and
Loidl
,
A.
,
2015
, “
Importance of Liquid Fragility for Energy Applications of Ionic Liquids
,”
Sci. Rep.
,
5
(
1
), p.
13922
. 10.1038/srep13922
3.
Dupont
,
J.
,
Souza
,
R. F. D.
, and
Suarez
,
P. A. Z.
,
2003
, “
Ionic Liquid (Molten Salt) Phase Organometallic Catalysis
,”
Chem. Rev.
,
102
(
10
), pp.
3667
3692
. 10.1021/cr010338r
4.
Yuan
,
J.
,
Mecerreyes
,
D.
, and
Antonietti
,
M.
,
2013
, “
Poly(Ionic Liquid)s: An Update
,”
Prog. Polym. Sci.
,
38
(
7
), pp.
1009
1036
. 10.1016/j.progpolymsci.2013.04.002
5.
Ye
,
C. F.
,
Liu
,
W. M.
,
Chen
,
Y. X.
, and
Yu
,
L. G.
,
2001
, “
Room-Temperature Ionic Liquids: A Novel Versatile Lubricant
,”
Chem. Commun.
,
21
(
21
), pp.
2244
2245
. 10.1039/B106935G
6.
Palacio
,
M.
, and
Bhushan
,
B.
,
2010
, “
A Review of Ionic Liquids for Green Molecular Lubrication in Nanotechnology
,”
Tribol. Lett.
,
40
(
2
), pp.
247
268
. 10.1007/s11249-010-9671-8
7.
Perkin
,
S.
,
2012
, “
Ionic Liquids in Confined Geometries
,”
Phys. Chem. Chem. Phys.
,
14
(
15
), pp.
5052
5062
. 10.1039/c2cp23814d
8.
Bermúdez
,
M. D.
,
Jiménez
,
A. E.
,
Sanes
,
J.
, and
Carrión
,
F. J.
,
2009
, “
Ionic Liquids as Advanced Lubricant Fluids
,”
Molecules
,
14
(
8
), pp.
2888
2908
. 10.3390/molecules14082888
9.
González
,
R.
,
Ramos
,
D.
,
Blanco
,
D.
,
Fernández-González
,
A.
,
Viesca
,
J. L.
,
Hadfield
,
M.
, and
Hernández Battez
,
A.
,
2019
, “
Tribological Performance of Tributylmethylammonium bis (Trifluoromethylsulfonyl) Amide as Neat Lubricant and as an Additive in a Polar Oil
,”
Friction
,
7
(
3
), pp.
282
288
. 10.1007/s40544-018-0231-9
10.
Jimenez
,
A. E.
, and
Bermudez
,
M. D.
,
2008
, “
Imidazolium Ionic Liquids as Additives of the Synthetic Ester Propylene Glycol Dioleate in Aluminium-Steel Lubrication
,”
Wear
,
265
(
5–6
), pp.
787
798
. 10.1016/j.wear.2008.01.009
11.
Kronberger
,
M.
,
Pejakovic
,
V.
,
Gabler
,
C.
, and
Kalin
,
M.
,
2012
, “
How Anion and Cation Species Influence the Tribology of a Green Lubricant Based on Ionic Liquids
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
226
(
11
), pp.
933
951
. 10.1177/1350650112459012
12.
Pejakovic
,
V.
,
Kronberger
,
M.
,
Mahrova
,
M.
,
Vilas
,
M.
,
Tojo
,
E.
, and
Kalin
,
M.
,
2012
, “
Pyrrolidinium Sulfate and Ammonium Sulfate Ionic Liquids as Lubricant Additives for Steel/Steel Contact Lubrication
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
226
(
11
), pp.
923
932
. 10.1177/1350650112448978
13.
Zhao
,
L. N.
,
Cai
,
T.
,
Zhang
,
Y. X.
,
Ye
,
M. T.
,
Shang
,
W. J.
,
Liu
,
D.
,
Tong
,
D. Y.
, and
Liu
,
S. G.
,
2019
, “
Synthesis, Characterization and Tribological Evaluation of Novel 1,4-Diazabicyclo [2.2.2] Octane Based Dicationic Ionic Liquids as Efficient Anti-Wear Lubricant Additives
,”
Sci. China Technol. Sci.
,
62
(
2
), pp.
252
262
. 10.1007/s11431-018-9384-2
14.
Song
,
Z.
,
Chen
,
T.
,
Wang
,
T. T.
,
Wang
,
Z.
, and
Gao
,
X. L.
,
2019
, “
Estimating Anti-Wear Properties of Ionic Liquids as Lubricant Additives Using a QSTR Model
,”
ASME J. Tribol.
,
141
(
9
), p.
091801
. 10.1115/1.4043904
15.
Karelson
,
M.
,
Lobanov
,
V. S.
, and
Katritzky
,
A. R.
,
1996
, “
Quantum-Chemical Descriptors in QSAR/QSPR Studies
,”
Chem. Rev.
,
96
(
3
), pp.
1027
1044
. 10.1021/cr950202r
16.
Yu
,
G. R.
,
Wen
,
L.
,
Zhao
,
D. H.
,
Asumana
,
C.
, and
Chen
,
X. C.
,
2013
, “
QSPR Study on the Viscosity of bis(Trifluoromethyl-Sulfonyl)Imide-Based Ionic Liquids
,”
J. Mol. Liq.
,
184
(
1
), pp.
51
59
. 10.1016/j.molliq.2013.04.021
17.
Dai
,
K.
, and
Gao
,
X. L.
,
2013
, “
Estimating Anti-Wear Properties of Lubricant Additives Using a Quantitative Structure Tribo-Ability Relationship Model With Back Propagation Neural Network
,”
Wear
,
306
(
1–2
), pp.
242
247
. 10.1016/j.wear.2012.11.045
18.
Wang
,
T. T.
,
Wang
,
Z.
,
Chen
,
H.
,
Dai
,
K.
, and
Gao
,
X. L.
,
2020
, “
BPNN-QSTR Models for Triazine Derivatives for Lubricant Additives
,”
ASME J. Tribol.
,
142
(
1
), p.
100801
. 10.1115/1.4044850
19.
Wang
,
T. T.
,
Dai
,
K.
,
Wang
,
Z.
,
Peng
,
H.
, and
Gao
,
X. L.
,
2017
, “
A Quantitative Structure Tribo-Ability Relationship Model for the Anti-Wear Properties of N/S-Containing Heterocyclic Lubricant Additives Using Back Propagation Neural Network
,”
Tribology
,
37
(
4
), pp.
495
500
. 10.1016/j.wear.2012.11.045
20.
Gao
,
X. L.
,
Wang
,
Z.
,
Dai
,
K.
, and
Wang
,
T. T.
,
2015
, “
A Quantitative Structure Tribo-Ability Relationship Model for Ester Lubricant Base Oils
,”
ASME J. Tribol.
,
137
(
2
), p.
021801
. 10.1115/1.4029332
21.
Gao
,
X. L.
,
Wang
,
Z.
,
Zhang
,
H.
, and
Dai
,
K.
,
2015
, “
A Three-Dimensional Quantitative Structure Tribo-Ability Relationship Model
,”
ASME J. Tribol.
,
137
(
2
), p.
021802
. 10.1115/1.4029388
22.
Gao
,
X. L.
,
Dai
,
K.
,
Wang
,
Z.
,
Wang
,
T. T.
,
He
,
J. B.
, and
Dai
,
K.
,
2016
, “
Establishing Quantitative Structure Tribo-Ability Relationship Model Using Bayesian Regularization Neural Network
,”
Friction
,
4
(
2
), pp.
105
115
. 10.1007/s40544-016-0104-z
23.
Liu
,
D. H.
,
Yang
,
Q.
,
Wang
,
R. T.
,
He
,
J. B.
, and
Gao
,
X. L.
,
2016
, “
CoMFA-QSTR and CoMSIA-QSTR Models for Anti-Wear Property of N-Containing Heterocyclic Derivatives as Lubricant Additives
,”
Tribology
,
36
(
4
), pp.
421
429
.
24.
Yang
,
Q.
,
Zhang
,
W. N.
, and
Gao
,
X. L.
,
2017
, “
Study of Antiwear Properties of Modified Lubricant About Trimethylolpropane Trioleate
,”
J. Cent. China Norm. Univ.
,
51
(
4
), pp.
470
478
.
25.
Gao
,
X. L.
,
Liu
,
D. H.
,
Song
,
Z.
, and
Dai
,
K.
,
2018
, “
Isosteric Design of Friction-Reduction and Anti-Wear Lubricant Additives With Less Sulfur Content
,”
Friction
,
6
(
2
), pp.
164
182
. 10.1007/s40544-017-0162-x
26.
Wang
,
Z.
,
Wang
,
T. T.
,
Yang
,
G. Y.
, and
Gao
,
X. L.
,
2018
, “
Estimating Anti-Wear Properties of Esters as Potential Lubricant-Based Oils Using QSTR Models With CoMFA and CoMSIA
,”
Friction
,
6
(
3
), pp.
289
296
. 10.1007/s40544-017-0175-5
27.
Dong
,
Y. Y.
,
Zuo
,
X. Y.
, and
Wu
,
J. P.
,
2000
,
Inorganic and Analytical Chemistry
,
Science Press
,
Beijing
.
28.
Dong
,
K.
,
Zhang
,
S. J.
, and
Wang
,
J. J.
,
2016
, “
Understanding the Hydrogen Bonds in Ionic Liquids and Their Roles in Properties and Reactions
,”
Chem. Commun.
,
52
(
41
), pp.
6744
6764
. 10.1039/C5CC10120D
29.
Qiao
,
Y. X.
,
Deng
,
T. S.
,
Hua
,
L.
,
Nils
,
T.
, and
Hou
,
Z. S.
,
2012
, “
Hydrogen-Bonding Interaction in 1-Butyl-3-Methylimidazolium Ionic Liquids
,”
China Sciencepaper
,
7
(
9
), pp.
707
711
.
30.
Zhang
,
L. Q.
,
Wang
,
Y.
,
Xu
,
Z.
, and
Li
,
H. R.
,
2009
, “
Comparison of the Blue-Shifted C−D Stretching Vibrations for DMSO-d6 in Imidazolium-Based Room Temperature Ionic Liquids and in Water
,”
J. Phys. Chem. B
,
113
(
17
), pp.
5978
5984
. 10.1021/jp900139z
31.
Jiang
,
K.
,
2019
, “
Study of the Force Field and Molecular Dynamic Simulation of Imidazolium Ionic Liquids
,”
Ph.D. dissertation
,
University of Chinese Academy of Sciences
,
Beijing, China
.
32.
Wang
,
N. N.
,
Zhang
,
Q. G.
,
Wu
,
F. G.
,
Li
,
Q. Z.
, and
Yu
,
Z. W.
,
2010
, “
Hydrogen Bonding Interactions Between a Representative Pyridinium-Based Ionic Liquid [BuPy][BF4] and Water/Dimethyl Sulfoxide
,”
J. Phys. Chem. B
,
114
(
26
), pp.
8689
8700
. 10.1021/jp103438q
33.
Zhang
,
Y. Q.
,
He
,
H. Y.
,
Zhang
,
S. J.
, and
Fan
,
M. H.
,
2018
, “
Hydrogen-Bonding Interactions in Pyridinium-Based Ionic Liquids and Dimethyl Sulfoxide Binary Systems: A Combined Experimental and Computational Study
,”
ACS Omega
,
3
(
2
), pp.
1823
1833
. 10.1021/acsomega.7b01805
34.
Matthews
,
R. P.
,
Welton
,
T.
, and
Hunt
,
P. A.
,
2015
, “
Hydrogen Bonding and π–π Interactions in Imidazolium-Chloride Ionic Liquid Clusters
,”
Phys. Chem. Chem. Phys.
,
17
(
22
), pp.
14437
14453
. 10.1039/C5CP00459D
You do not currently have access to this content.