Abstract

The present work aims to study the abrasive wear of kenaf/high-density polyethylene (HDPE) composites with 20% weight fraction reinforcement of the kenaf fiber. A unique technique of the microwave-assisted compression molding (MACM) was used to fabricate the composites. The pin-on-disc setup was used for two-body abrasive wear, in which the kenaf/HDPE composite acts as a pin and the abrasive paper (P100) acts as a counter surface. Two-body abrasive wear tests were conducted for HDPE and kenaf/HDPE composites at normal loads of 10 N, 20 N, and 30 N and the sliding speed of 1 m/s, 2 m/s, and 3 m/s within 100 m of sliding distance. Tribofilm formation was observed at higher values of load and speed, which helps in reducing the wear-rate of the composites. Wear mechanism of the kenaf/HDPE composite is discussed in detail and supported with scanning electron microscope (SEM) fractography.

References

1.
Broitman
,
E.
,
Nedelcu
,
D.
,
Mazurchevici
,
S.
,
Glenat
,
H.
, and
Grillo
,
S.
,
2019
, “
Tribological and Nanomechanical Behavior of Liquid Wood
,”
ASME J. Tribol.
,
141
(
2
), p.
022001
. 10.1115/1.4041074
2.
Mohan
,
T. P.
, and
Kanny
,
K.
,
2019
, “
Tribological Properties of Nanoclay-Infused Banana Fiber Reinforced Epoxy Composites
,”
ASME J. Tribol.
,
141
(
5
), p.
052003
. 10.1115/1.4042873
3.
El-Shekeil
,
Y. A.
,
Sapuan
,
S. M.
,
Abdan
,
K.
, and
Zainudin
,
E. S.
,
2012
, “
Influence of Fiber Content on the Mechanical and Thermal Properties of Kenaf Fiber Reinforced Thermoplastic Polyurethane Composites
,”
Mater. Des.
,
40
, pp.
299
303
. 10.1016/j.matdes.2012.04.003
4.
Gamit
,
D.
,
Mishra
,
R. R.
, and
Sharma
,
A. K.
,
2017
, “
Joining of Mild Steel Pipes Using Microwave Hybrid Heating at 2.45 GHz and Joint Characterization
,”
J. Manuf. Process.
,
27
, pp.
158
168
. 10.1016/j.jmapro.2017.04.028
5.
Singh
,
M. K.
,
Zafar
,
S.
, and
Talha
,
M.
,
2019
, “
Development of Porous Bio-Composites Through Microwave Curing for Bone Tissue Engineering
,”
Mater. Today Proc.
,
18
(
3
), pp.
731
739
. 10.1016/j.matpr.2019.06.478
6.
Singh
,
M. K.
,
Zafar
,
S.
, and
Talha
,
M.
,
2019
, “
Development and Characterisation of Poly-L-Lactide-Based Foams Fabricated Through Microwave-Assisted Compression Moulding
,”
J. Cell. Plast.
,
55
(
5
), pp.
523
541
. 10.1177/0021955X19850728
7.
Singh
,
M. K.
, and
Zafar
,
S.
,
2018
, “
Influence of Microwave Power on Mechanical Properties of Microwave-Cured Polyethylene/Coir Composites
,”
J. Nat. Fibers
, pp.
1
16
. 10.1080/15440478.2018.1534192
8.
Singh
,
M. K.
, and
Zafar
,
S.
,
2019
, “
Development and Mechanical Characterization of Microwave-Cured Thermoplastic Based Natural Fibre Reinforced Composites
,”
J. Thermoplast. Compos. Mater.
,
32
(
10
), pp.
1427
1442
. 10.1177/0892705718799832
9.
Singh
,
M. K.
,
Chauhan
,
D.
,
Gupta
,
M. K.
, and
Diwedi
,
A.
,
2015
, “
Optimization of Process Parameters of Aluminum Alloy (Al-6082 T-6) Machined on CNC Lathe Machine for Low Surface Roughness
,”
J. Mater. Sci. Eng.
,
4
(
202
), pp.
2169
0022
.
10.
Singh
,
M. K.
,
Verma
,
N.
, and
Zafar
,
S.
,
2019
, “
Optimization of Process Parameters of Microwave Processed PLLA/Coir Composites for Enhanced Mechanical Behavior
,”
J. Phys. Conf. Ser.
,
1240
(
1
), p.
012038
. 10.1088/1742-6596/1240/1/012038
11.
Tewari
,
R.
,
Singh
,
M. K.
,
Zafar
,
S.
, and
Powar
,
S.
,
2020
, “
Parametric Optimization of Laser Drilling of Microwave-Processed Kenaf/HDPE Composite
,”
Polym. Polym. Compos.
10.1177/0967391120905705
12.
Singh
,
M. K.
,
Verma
,
N.
,
Pundhir
,
N.
,
Zafar
,
S.
, and
Pathak
,
H.
,
2020
, “
Optimization of Microwave Power and Reinforcement in Microwave-Cured Coir/HDPE Composites
,”
Adv. Mech. Eng.
, pp.
159
170
. 10.1007/978-981-15-0124-1_16
13.
Verma
,
N.
,
Zafar
,
S.
, and
Pathak
,
H.
,
2019
, “
Microwave-Assisted Composite Fabrication of Nano-Hydroxyapatite Reinforced Ultra-Highmolecular Weight Polyethylene Composite
,”
Mater. Res. Express
,
6
(
11
), p.
115333
. 10.1088/2053-1591/ab4b28
14.
Arora
,
G.
,
Pathak
,
H.
, and
Zafar
,
S.
,
2019
, “
Fabrication and Characterization of Microwave Cured High-Density Polyethylene/Carbon Nanotube and Polypropylene/Carbon Nanotube Composites
,”
J. Compos. Mater.
,
53
(
15
), pp.
2091
2104
. 10.1177/0021998318822705
15.
Verma
,
N.
, and
Zafar
,
S.
,
2019
, “
Investigations on Mechanical Performance of Multi-Layered Microwave Processed HDPE/Sisal Composites for Automobile Applications
,”
Appl. Mech. Mater.
,
895
(
1
), pp.
64
69
. www.scientific.net/AMM.895.64
16.
Bajpai
,
P. K.
,
Singh
,
I.
, and
Madaan
,
J.
,
2013
, “
Tribological Behavior of Natural Fiber Reinforced PLA Composites
,”
Wear
,
297
(
1–2
), pp.
829
840
. 10.1016/j.wear.2012.10.019
17.
Chan
,
C. M.
,
Vandi
,
L. J.
,
Pratt
,
S.
,
Halley
,
P.
,
Richardson
,
D.
,
Werker
,
A.
, and
Laycock
,
B.
,
2018
, “
Composites of Wood and Biodegradable Thermoplastics: A Review
,”
Polym. Rev.
,
58
(
3
), pp.
444
494
. 10.1080/15583724.2017.1380039
18.
Aireddy
,
H.
, and
Mishra
,
S. C.
,
2011
, “
Tribological Behavior and Mechanical Properties of Bio-Waste Reinforced Polymer Matrix Composites
,”
J. Metall. Mater. Sci.
,
53
(
2
), pp.
139
152
.
19.
Shuhimi
,
F. F.
,
Abdollah,
,
M. F. B.
,
Kalam
,
M. A.
,
Hassan
,
M.
,
Mustafa
,
A.
, and
Amiruddin
,
H.
,
2016
, “
Tribological Characteristics Comparison for Oil Palm Fibre/Epoxy and Kenaf Fibre/Epoxy Composites Under Dry Sliding Conditions
,”
Tribol. Int.
,
101
(
1
), pp.
247
254
. 10.1016/j.triboint.2016.04.020
20.
Shanmugam
,
D.
,
Thiruchitrambalam
,
M.
, and
Thirumurugan
,
R.
,
2016
, “
Wear Behavior of Palmyra Palm Leaf Stalk Fiber (PPLSF) Reinforced Polyester Composites
,”
Compos. Interfaces
,
23
(
2
), pp.
89
103
. 10.1080/09276440.2016.1102558
21.
Singh
,
N.
,
Yousif
,
B. F.
, and
Rilling
,
D.
,
2011
, “
Tribological Characteristics of Sustainable Fiber-Reinforced Thermoplastic Composites Under Wet Adhesive Wear
,”
Tribol. Trans.
,
54
(
5
), pp.
736
748
. 10.1080/10402004.2011.597544
22.
Nirmal
,
U.
,
Lau
,
S. T.
,
Hashim
,
J.
,
Devadas
,
A.
, and
Yuhazri
,
Y. M.
,
2015
, “
Effect of Kenaf Particulate Fillers in Polymeric Composite for Tribological Applications
,”
Text. Res. J.
,
85
(
15
), pp.
1602
1619
. 10.1177/0040517514563744
23.
Aranganathan
,
N.
, and
Jayashree
,
B.
,
2017
, “
Fiber-Surface Quality Enhancement to Improve the Performance Properties of Friction Materials
,”
ASME J. Tribol.
,
139
(
5
), p.
051605
. 10.1115/1.4035477
24.
Thostenson
,
E. T.
, and
Chou
,
T. W.
,
2001
, “
Microwave and Conventional Curing of Thick-Section Thermoset Composite Laminates: Experiment and Simulation
,”
Polym. Compos.
,
22
(
2
), pp.
197
212
. 10.1002/pc.10531
25.
Bartenev
,
G. M.
, and
Lavrentev
,
V. V.
,
1981
,
Friction and Wear of Polymers
, Vol.
6
,
Elsevier
,
New York
.
26.
Mohanty
,
A. K.
,
Misra
,
M.
, and
Hinrichsen
,
G.
,
2000
, “
Biofibres, Biodegradable Polymers and Biocomposites: An Overview
,”
Macromol. Mater. Eng.
,
276–277
(
1
), pp.
1
24
. 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
27.
Hamma
,
A.
,
Kaci
,
M.
,
Mohd Ishak
,
Z. A.
, and
Pegoretti
,
A.
,
2014
, “
Starch-Grafted-Polypropylene/Kenaf Fibres Composites. Part 1: Mechanical Performances and Viscoelastic Behaviour
,”
Compos. Part A Appl. Sci. Manuf.
,
56
, pp.
328
335
. 10.1016/j.compositesa.2012.11.010
28.
Andre
,
N. G.
,
Ariawan
,
D.
, and
Mohd Ishak
,
Z. A.
,
2016
, “
Elastic Anisotropy of Kenaf Fibre and Micromechanical Modeling of Nonwoven Kenaf Fibre/Epoxy Composites
,”
J. Reinf. Plast. Compos.
,
35
(
19
), pp.
1424
1433
. 10.1177/0731684416652740
29.
Wang
,
Q.
,
Jones
,
J.
,
Lu
,
N.
,
Johnson
,
R.
,
Ning
,
H.
, and
Pillay
,
S.
,
2018
, “
Development and Characterization of High-Performance Kenaf Fiber–HDPE Composites
,”
J. Reinf. Plast. Compos.
,
37
(
3
), pp.
191
200
. 10.1177/0731684417739127
30.
Chen
,
B.
,
Yang
,
J.
,
Wang
,
J.
,
Liu
,
N.
, and
Yan
,
F.
,
2015
, “
Comparative Investigation on the Friction and Wear Behaviors of Carbon Fabric–Reinforced Phenolic Composites Under Seawater Lubrication
,”
Tribol. Trans.
,
58
(
1
), pp.
140
147
. 10.1080/10402004.2014.959146
31.
Liu
,
Y.
,
Ma
,
Y.
,
Yu
,
J.
,
Zhuang
,
J.
,
Wu
,
S.
, and
Tong
,
J.
,
2019
, “
Development and Characterization of Alkali Treated Abaca Fiber Reinforced Friction Composites
,”
Compos. Interfaces
,
26
(
1
), pp.
67
82
. 10.1080/09276440.2018.1472456
32.
Giordano
,
M. A.
, and
Schmid
,
S. R.
,
2012
, “
Evaluation of Individual Fiber Wear Resistance Using Accelerated Life Testing
,”
Tribol. Trans.
,
55
(
1
), pp.
140
148
. 10.1080/10402004.2011.636864
33.
Yallew
,
T. B.
,
Kumar
,
P.
, and
Singh
,
I.
,
2015
, “
Sliding Behaviour of Woven Industrial Hemp Fabric Reinforced Thermoplastic Polymer Composites
,”
Int. J. Plast. Technol.
,
19
(
2
), pp.
347
362
. 10.1007/s12588-015-9121-4
34.
Chand
,
N.
, and
Dwivedi
,
U. K.
,
2006
, “
Effect of Coupling Agent on Abrasive Wear Behaviour of Chopped Jute Fibre-Reinforced Polypropylene Composites
,”
Wear
,
261
(
10
), pp.
1057
1063
. 10.1016/j.wear.2006.01.039
35.
Goriparthi
,
B. K.
,
Suman
,
K. N. S.
, and
Mohan Rao
,
N.
,
2012
, “
Effect of Fiber Surface Treatments on Mechanical and Abrasive Wear Performance of Polylactide/Jute Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
43
(
10
), pp.
1800
1808
. 10.1016/j.compositesa.2012.05.007
36.
Qi
,
H.
,
Hu
,
C.
,
Zhang
,
G.
,
Yu
,
J.
,
Zhang
,
Y.
, and
He
,
H.
,
2019
, “
Comparative Study of Tribological Properties of Carbon Fibers and Aramid Particles Reinforced Polyimide Composites Under Dry and Sea Water Lubricated Conditions
,”
Wear
,
436–437
, p.
203001
. 10.1016/j.wear.2019.203001
You do not currently have access to this content.