Thermocapillary migration is an interfacial phenomenon that describes liquid flow on a nonisothermal surface from warm to cold regions in the absence of external forces. It is a typical lubricant loss mechanism in tribosystems. To ensure continued reliability of lubricated assemblies, knowledge of the migration capacity of different liquids and solids is needed. In the present work, migration experiments were conducted on various liquid lubricants on different solid surfaces. It was found that polar lubricants such as ionic liquids and polyethylene glycol hardly migrate on the tested surfaces, and the antimigration capacity of the polytetrafluoroethylene surface was discovered to be very high. Particular attention is paid to the migration mechanism associated with surface tension and contact angle. General guidelines for evaluating the migration capacities of different liquids on solids are proposed.

References

References
1.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2008
,
Applied Tribology: Bearing Design and Lubrication
,
John Wiley & Sons Ltd
,
Chichester
.
2.
Amiri
,
M.
, and
Khonsari
,
M. M.
,
2010
, “
On the Thermodynamics of Friction and Wear—A Review
,”
Entropy
,
12
(
5
), pp.
1021
1049
.
3.
Tadmor
,
R.
,
2009
, “
Marangoni Flow Revisited
,”
J. Colloid Interface Sci.
,
332
(
2
), pp.
451
454
.
4.
Bormashenko
,
E.
,
Bormashenko
,
Y.
,
Grynyov
,
R.
,
Aharoni
,
H.
,
Whyman
,
G.
, and
Binks
,
B. P.
,
2015
, “
Self-Propulsion of Liquid Marbles: Leidenfrost-Like Levitation Driven by Marangoni Flow
,”
J. Phys. Chem. C
,
119
(
18
), pp.
9910
9915
.
5.
Dai
,
Q.
,
Khonsari
,
M. M.
,
Shen
,
C.
,
Huang
,
W.
, and
Wang
,
X.
,
2017
, “
On the Migration of a Droplet on an Incline
,”
J. Colloid Interface Sci.
,
494
, pp.
8
14
.
6.
Dai
,
Q.
,
Huang
,
W.
,
Wang
,
X.
, and
Khonsari
,
M. M.
,
2018
, “
Ringlike Migration of a Droplet Propelled by an Omnidirectional Thermal Gradient
,”
Langmuir
,
34
(
13
), pp.
3806
3812
.
7.
Chen
,
J. Z.
,
Troian
,
S. M.
,
Darhuber
,
A. A.
, and
Wagner
,
S.
,
2005
, “
Effect of Contact Angle Hysteresis on Thermocapillary Droplet Actuation
,”
J. Appl. Phys.
,
97
(
1
), p.
014906
.
8.
Dai
,
Q.
,
Huang
,
W.
, and
Wang
,
X.
,
2018
, “
Contact Angle Hysteresis Effect on the Thermocapillary Migration of Liquid Droplets
,”
J. Colloid Interface Sci.
,
515
, pp.
32
38
.
9.
Kannel
,
J. W.
, and
Dufrane
,
K. F.
,
1986
, “
Rolling Element Bearings in Space
,”
20th Aerospace Mechanisms Symposium
,
Cleveland, OH
,
May 7–9
, pp.
121
132
.
10.
Pratap
,
V.
,
Moumen
,
N.
, and
Subramanian
,
R. S.
,
2008
, “
Thermocapillary Motion of a Liquid Drop on a Horizontal Solid Surface
,”
Langmuir
,
24
(
9
), pp.
5185
5193
.
11.
Bakli
,
C.
,
Sree Hari
,
P. D.
, and
Chakraborty
,
S.
,
2017
, “
Mimicking Wettability Alterations Using Temperature Gradients for Water Nanodroplets
,”
Nanoscale
,
9
(
34
), pp.
12509
12515
.
12.
Sathyan
,
K.
,
Hsu
,
H. Y.
,
Lee
,
S. H.
, and
Gopinath
,
K.
,
2010
, “
Long-Term Lubrication of Momentum Wheels Used in Spacecrafts—An Overview
,”
Tribol. Int.
,
43
(
1–2
), pp.
259
267
.
13.
Jones
,
W. R.
, and
Jansen
,
M. J.
,
2008
, “
Tribology for Space Applications
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
222
(
8
), pp.
997
1004
.
14.
Liu
,
W.
,
Weng
,
L.
, and
Sun
,
J.
,
2009
,
Space Lubrication Materials and Technical Manuals
,
Science Press
,
Beijing
.
15.
Roberts
,
E. W.
, and
Todd
,
M. J.
,
1990
, “
Space and Vacuum Tribology
,”
Wear
,
136
(
1
), pp.
157
167
.
16.
Zaretsky
,
E. V.
,
1990
, “
Liquid Lubrication in Space
,”
Tribol. Int.
,
23
(
2
), pp.
75
93
.
17.
Chaudhury
,
M. K.
,
2003
, “
Spread the Word About Nanofluids
,”
Nature
,
423
, pp.
131
132
.
18.
Ke
,
H.
,
Huang
,
W.
, and
Wang
,
X.
,
2016
, “
Controlling Lubricant Migration Using Ferrofluids
,”
Tribol. Int.
,
93
, Part A, pp.
318
323
.
19.
Dai
,
Q.
,
Li
,
M.
,
Khonsari
,
M. M.
,
Huang
,
W.
, and
Wang
,
X.
,
2018
, “
The Thermocapillary Migration on Rough Surfaces
,”
Lubr. Sci.
20.
Dai
,
Q.
,
Huang
,
W.
, and
Wang
,
X.
,
2015
, “
A Surface Texture Design to Obstruct the Liquid Migration Induced by Omnidirectional Thermal Gradients
,”
Langmuir
,
31
(
37
), pp.
10154
10160
.
21.
Tian
,
D.
,
He
,
L.
,
Zhang
,
N.
,
Zheng
,
X.
,
Dou
,
Y.
,
Zhang
,
X.
,
Guo
,
Z.
, and
Jiang
,
L.
,
2016
, “
Electric Field and Gradient Microstructure for Cooperative Driving of Directional Motion of Underwater Oil Droplets
,”
Adv. Funct. Mater.
,
26
(
44
), pp.
7986
7992
.
22.
Zhang
,
M.
,
Wang
,
L.
,
Hou
,
Y.
,
Shi
,
W.
,
Feng
,
S.
, and
Zheng
,
Y.
,
2015
, “
Controlled Smart Anisotropic Unidirectional Spreading of Droplet on a Fibrous Surface
,”
Adv. Mater.
,
27
(
34
), pp.
5057
5062
.
23.
Fusaro
,
R. L.
,
2001
, “
Preventing Spacecraft Failures Due to Tribological Problems
,” NASA/TM-2001-210806.
24.
Bonn
,
D.
,
Eggers
,
J.
,
Indekeu
,
J.
,
Meunier
,
J.
, and
Rolley
,
E.
,
2009
, “
Wetting and Spreading
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
739
805
.
25.
Muratore
,
C.
, and
Voevodin
,
A. A.
,
2009
, “
Chameleon Coatings: Adaptive Surfaces to Reduce Friction and Wear in Extreme Environments
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
297
324
.
26.
Öztürk
,
A.
,
Ezirmik
,
K. V.
,
Kazmanlı
,
K.
,
Ürgen
,
M.
,
Eryılmaz
,
O. L.
, and
Erdemir
,
A.
,
2008
, “
Comparative Tribological Behaviors of TiN, CrN and MoNCu Nanocomposite Coatings
,”
Tribol. Int.
,
41
(
1
), pp.
49
59
.
27.
Miyoshi
,
K.
,
2007
, “
Solid Lubricants and Coatings for Extreme Environments: State-of-the-Art Survey
,” NASA/TM-2007-214668.
28.
Brochard
,
F.
,
1989
, “
Motions of Droplets on Solid Surfaces Induced by Chemical or Thermal Gradients
,”
Langmuir
,
5
(
2
), pp.
432
438
.
29.
Ford
,
M. L.
, and
Nadim
,
A.
,
1994
, “
Thermocapillary Migration of an Attached Drop on a Solid Surface
,”
Phys. Fluids
,
6
(
9
), pp.
3183
3185
.
30.
Dai
,
Q.
,
Khonsari
,
M. M.
,
Shen
,
C.
,
Huang
,
W.
, and
Wang
,
X.
,
2016
, “
Thermocapillary Migration of Liquid Droplets Induced by a Unidirectional Thermal Gradient
,”
Langmuir
,
32
(
30
), pp.
7485
7492
.
31.
Cheng
,
T.
,
Zhao
,
B.
,
Chao
,
J.
,
Meeks
,
S. W.
, and
Velidandea
,
V.
,
2000
, “
The Lubricant Migration Rate on the Hard Disk Surface
,”
Tribol. Lett.
,
9
(
3–4
), pp.
181
185
.
32.
Foroutan
,
M.
,
Fatemi
,
S. M.
,
Esmaeilian
,
F.
,
Naeini
,
V. F.
, and
Baniassadi
,
M.
,
2018
, “
Contact Angle Hysteresis and Motion Behaviors of a Water Nano-Droplet on Suspended Graphene Under Temperature Gradient
,”
Phys. Fluids
,
30
(
5
), p.
052101
.
33.
Karapetsas
,
G.
,
Sahu
,
K. C.
, and
Matar
,
O. K.
,
2013
, “
Effect of Contact Line Dynamics on the Thermocapillary Motion of a Droplet on an Inclined Plate
,”
Langmuir
,
29
(
28
), pp.
8892
8906
.
34.
Dussan V
,
E. B.
,
1985
, “
On the Ability of Drops or Bubbles to Stick to Non-Horizontal Surfaces of Solids. Part 2. Small Drops or Bubbles Having Contact Angles of Arbitrary Size
,”
J. Fluid Mech.
,
151
, pp.
1
20
.
35.
Tadmor
,
R.
,
2004
, “
Line Energy and the Relation Between Advancing, Receding, and Young Contact Angles
,”
Langmuir
,
20
(
18
), pp.
7659
7664
.
36.
De Gennes
,
P.
,
1985
, “
Wetting: Statics and Dynamics
,”
Rev. Mod. Phys.
,
57
(
3
), pp.
827
863
.
37.
Wasan
,
D. T.
,
Nikolov
,
A. D.
, and
Brenner
,
H.
,
2001
, “
Droplets Speeding on Surfaces
,”
Science
,
291
(
5504
), pp.
605
606
.
38.
Adamson
,
A. W.
, and
Gast
,
A. P.
,
1997
,
Physical Chemistry of Surface
,
John Wiley & Sons Inc.
,
New York
.
39.
Hayes
,
R.
,
Warr
,
G. G.
, and
Atkin
,
R.
,
2010
, “
At the Interface: Solvation and Designing Ionic Liquids
,”
Phys. Chem. Chem. Phys.
,
12
(
8
), pp.
1709
1723
.
40.
Mezger
,
M.
,
Schröder
,
H.
,
Reichert
,
H.
,
Schramm
,
S.
,
Okasinski
,
J. S.
,
Schöder
,
S.
,
Honkimäki
,
V.
,
Deutsch
,
M.
,
Ocko
,
B. M.
,
Ralston
,
J.
,
Rohwerder
,
M.
,
Stratmann
,
M.
, and
Dosch
,
H.
,
2008
, “
Molecular Layering of Fluorinated Ionic Liquids at a Charged Sapphire (0001) Surface
,”
Science
,
322
(
5900
), pp.
424
428
.
You do not currently have access to this content.