The materials used for the slurry transportation system experience erosion wear due to the impact of suspended solid particles. In the present experimental investigation, a large size slurry pot tester was used to investigate the slurry erosion behavior of steel 304L, grey cast iron, and high chromium white cast iron in the velocity range of 9.0–18.5 m/s. Experiments were conducted by rotating the wear specimens in the pot tester at 1% weight concentration of Indian standard sand. The erosion behavior of the three target materials was evaluated by varying the orientation angle from 15 to 90 deg and particle size from 256 to 655 µm. The erosion rate was found to increase with velocity having power index value varying between 2 and 3, which increases with an increase in impact angle and depends on the target material. The erosion rate of the material also increases with the increase in particle size with the power index varying between 0.8 and 1.4 depending on the target material. No significant change was noticed in the mechanism of erosion of the target materials with the variation in velocity in the present range of test conditions. Empirical correlations are proposed to estimate the total erosion rate of all the three materials as a contribution of cutting and deformation wear.

References

1.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2017
, “
Hydraulic Performance and Erosive Wear of Centrifugal Slurry Pumps—A Review
,”
Powder Technol.
,
305
(
1
), pp.
27
38
.
2.
Davidson
,
G.
,
1987
, “
Considerations for Proper Sizing and Material Selection to Optimize Slurry Pump Performance
,”
Proceedings of the Fourth International Pump Symposium
,
Houston, TX
,
May 5–7
, pp.
35
54
.
3.
Roco
,
M. C.
,
Addie
,
G. R.
,
Dennis
,
J.
, and
Nair
,
P.
,
1984
, “
Modeling Erosion Wear in Centrifugal Slurry Pumps
,”
Hydrotransport 9, BHRA Fluid Engineering
,
Rome, Italy
, Paper G1.
4.
Mishra
,
R.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
1998
, “
Study of Wear Characteristics and Solid Distribution in Constant Area and Erosion-Resistant Long-Radius Pipe Bends for the Flow of Multisized Particulate Slurries
,”
Wear
,
217
(
2
), pp.
297
306
.
5.
Walker
,
C. I.
, and
Bodkin
,
G. C.
,
2000
, “
Empirical Wear Relationships for Centrifugal Slurry Pumps Part 1: Side-Liners
,”
Wear
,
242
(
1–2
), pp.
140
146
.
6.
Khalid
,
Y. A.
, and
Sapuan
,
S. M.
,
2007
, “
Wear Analysis of Centrifugal Slurry Pump Impellers
,”
Ind. Lubr. Tribol.
,
59
(
1
), pp.
18
28
.
7.
Gandhi
,
B. K.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2003
, “
A Study on the Effect of Surface Orientation on Erosion Wear of Flat Specimens Moving in a Solid-Liquid Suspension
,”
Wear
,
254
(
12
), pp.
1233
1238
.
8.
Tsai
,
W.
,
Humphrey
,
J. A. C.
,
Carnet
,
I.
, and
Levy
,
A. V.
,
1981
, “
Experimental Measurement of Accelerated Erosion in Slurry Pot Tester
,”
Wear
,
68
(
3
), pp.
289
303
.
9.
Levy
,
A. V.
, and
Yau
,
P.
,
1984
, “
Erosion of Steels in Liquid Slurries
,”
Wear
,
98
(
1
), pp.
163
182
.
10.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2005
, “
Improvement in the Design of a Pot Tester to Simulate Erosion Wear due to Solid–Liquid Mixture
,”
Wear
,
259
(
1–6
), pp.
196
202
.
11.
Tian
,
H. H.
,
Addie
,
G. R.
, and
Barsh
,
E. P.
,
2007
, “
A New Impact Erosion Testing Setup Through Coriolis Approach
,”
Wear
,
263
(
1–6
), pp.
289
294
.
12.
Abouel-Kasem
,
A.
,
Abd-Elrhman
,
Y. M.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2010
, “
Design and Performance of Slurry Erosion Tester
,”
ASME J. Tribol.
,
132
(
2
), p.
021601
.
13.
Lin
,
N.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
, and
Lan
,
H.
,
2018
, “
Experimental Study of Particle Size, Shape and Particle Flow Rate on Erosion of Stainless Steel
,”
Powder Technol.
,
336
(
1
), pp.
70
79
.
14.
Oka
,
Y. I.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact Part 2: Mechanical Properties of Materials Directly Associated With Erosion Damage
,”
Wear
,
259
(
1–6
), pp.
102
109
.
15.
Elkholy
,
A.
,
1983
, “
Prediction of Abrasion Wear for Slurry Pump Materials
,”
Wear
,
84
(
1
), pp.
39
49
.
16.
Gupta
,
R.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
1995
, “
Prediction of Uneven Wear in a Slurry Pipeline on the Basis of Measurements in a Pot Tester
,”
Wear
,
184
(
2
), pp.
169
178
.
17.
Zhang
,
Y.
,
Reuterfors
,
E. P.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
Rybicki
,
E. F.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.
18.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2011
, “
Development of Correlations for Predicting the Slurry Erosion of Ductile Materials
,”
ASME J. Tribol.
,
133
(
3
), p.
031603
.
19.
Okita
,
R.
,
Zhang
,
Y.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2012
, “
Experimental and Computational Investigations to Evaluate the Effects of Fluid Viscosity and Particle Size on Erosion Damage
,”
ASME J. Fluids Eng.
,
134
(
6
), pp.
061301
.
20.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows due to Sand Particles in Air Flow
,”
Powder Technol.
288
(
1
), pp.
339
353
.
21.
Rawat
,
A.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2017
, “
Erosion Wear Studies on High Concentration Fly Ash Slurries
,”
Wear
,
378–379
(
1
), pp.
114
125
.
22.
Khanal
,
K.
,
Neopane
,
H. P.
,
Rai
,
S.
,
Thapa
,
M.
,
Bhatt
,
S.
, and
Shrestha
,
R.
,
2016
, “
A Methodology for Designing Francis Runner Blade to Find Minimum Sediment Erosion Using CFD
,”
Renew. Energy
,
87
(
1
), pp.
307
316
.
23.
Kang
,
M. W.
,
Park
,
N.
, and
Suh
,
S. H.
,
2016
, “
Numerical Study on Sediment Erosion of Francis Turbine With Different Operating Conditions and Sediment Inflow Rates
,”
Procedia Eng.
,
157
(
1
), pp.
457
464
.
24.
Xie
,
Y.
,
Jiang
,
J.
,
Tufa
,
K. Y.
, and
Yick
,
S.
,
2015
, “
Wear Resistance of Materials Used for Slurry Transport
,”
Wear
,
332–333
(
1
), pp.
1104
1110
.
25.
IS 9801:1987
,
2003
, “Indian Standard Specification for Pumps for Handling Slurry,”
First Revision
,
Bureau of Indian Standards
,
New Delhi, India
.
26.
Gandhi
,
B. K
,
2015
, “
An Accelerated Erosion Wear Test Rig for High Impact Velocities
,”
International Conference on Hydropower for Sustainable Development
,
Dehradun, India
,
Feb. 5–7
, pp.
528
534
.
27.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2016
, “
Effect of Propeller Off-Bottom Clearance and Size on Suspension of Sand Particles in a Cylindrical Tank: Application to Slurry Pot Tester
,”
International Conference of Fluid Mechanics and Fluid Power
,
MNNIT Allahabad
,
India
, Paper 82.
28.
Sharma
,
S.
,
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2018
, “
Experimental Investigation of Flow Field of a Pot Tester due to Propeller Rotation
,”
International Conference of Fluid Mechanics and Fluid Power
,
IIT Bombay
,
India
, Paper 487.
29.
Cox
,
E. P.
,
1927
, “
A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains
,”
J. Paleontol.
,
1
(
3
), pp.
179
183
.
30.
Harsha
,
A. P.
, and
Thakre
,
A. A.
,
2007
, “
Investigation on Solid Particle Erosion Behaviour of Polyetherimide and its Composites
,”
Wear
,
262
(
7–8
), pp.
807
818
.
31.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.
32.
Islam
,
A.
, and
Farhat
,
Z. N.
,
2014
, “
Effect of Impact Angle and Velocity on Erosion of API X42 Pipeline Steel Under High Abrasive Feed Rate
,”
Wear
,
311
(
1–2
), pp.
180
190
.
33.
Yoganandh
,
J.
,
Natarajan
,
S.
, and
Kumaresh Babu
,
S. P.
,
2015
, “
Erosive Wear Behavior of High-Alloy Cast Iron and Duplex Stainless Steel Under Mining Conditions
,”
J. Mater. Eng. Perform.
,
24
(
9
), pp.
3588
3598
.
34.
Javaheria
,
V.
,
Portera
,
D.
, and
Kuokkala
,
V. T.
,
2018
, “
Slurry Erosion of Steel–Review of Tests, Mechanisms and Materials
,”
Wear
,
408–409
(
1
), pp.
248
273
.
35.
Yildizli
,
K.
,
Karamis
,
M. B.
, and
Nair
,
F.
,
2006
, “
Erosion Mechanisms of Nodular and Gray Cast Irons at Different Impact Angles
,”
Wear
,
261
(
5–6
), pp.
622
633
.
36.
Yoganandh
,
J.
,
Natarajan
,
S.
, and
Kumaresh Babu
,
S. P.
,
2013
, “
Erosion Behaviour of WC–Co–Cr Thermal Spray Coated Grey Cast Iron Under Mining Environment
,”
Trans. Indian Inst. Met.
,
66
(
4
), pp.
437
443
.
37.
McDonald
,
L. G.
, and
Kelley
,
J. E.
,
1994
, “
Erosive Wear of Potential Valve Materials for Coal-Conversion Plants
,”
U.S. Department of the Interior, Bureau of Mines
, Report of Investigations No. 9490.
38.
Al-Bukhaiti
,
M. A.
,
Abouel-Kasem
,
A.
,
Emara
,
K. M.
, and
Ahmed
,
S. M.
,
2017
, “
A Study on Slurry Erosion Behavior of High Chromium White Cast Iron
,”
ASME J. Tribol.
,
139
(
4
), p.
041102
.
39.
Finnie
,
I.
, and
McFadden
,
D. H.
,
1978
, “
On the Velocity Dependence of the Erosion of Ductile Metals by Solid Particles at Low Angles of Incidence
,”
Wear
,
48
(
1
), pp.
181
190
.
40.
Lin
,
F. Y.
, and
Shao
,
H. S.
,
1991
, “
Effect of Impact Velocity on Slurry Erosion and a New Design of a Slurry Erosion Tester
,”
Wear
,
143
(
2
), pp.
231
240
.
41.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S. C.
,
2009
, “
Particle Size Effects on the Slurry Erosion of Aluminium Alloy (AA 6063)
,”
Wear
,
266
(
11–12
), pp.
1066
1071
.
42.
Abouel-Kasem
,
A.
,
2011
, “
Particle Size Effects on Slurry Erosion of 5117 Steels
,”
ASME J. Tribol.
,
133
(
1
), p.
014502
.
43.
Iwai
,
Y.
, and
Nambu
,
K.
,
1997
, “
Slurry Wear Properties of Pump Lining Materials
,”
Wear
,
210
(
1–2
), pp.
211
219
.
44.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
45.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part II
,”
Wear
,
6
(
1
), pp.
169
190
.
46.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
47.
Huang
,
C.
,
Chiovelli
,
S.
,
Minev
,
P.
,
Luo
,
J.
, and
Nandakumar
,
K.
,
2008
, “
A Comprehensive Phenomenological Model for Erosion of Materials in Jet Flow
,”
Powder Technol.
,
187
(
3
), pp.
273
279
.
48.
Zhong
,
Y.
, and
Minemura
,
K.
,
1996
, “
Measurement of Erosion due to Particle Impingement and Numerical Prediction of Wear in Pump Casing
,”
Wear
,
199
(
1
), pp.
36
44
.
You do not currently have access to this content.