Recent experiments have shown that the elastic deformation behaviors of a polymeric material are consistent with the Cosserat elasticity under nonuniform deformation at a millimeter scale. Thus, an elastohydrodynamic lubrication model in the framework of the Cosserat continuum theory is proposed to explore the lubrication performance that deviates from the classical elastohydrodynamic lubrication theory for the small polymer journal bearings with millimeter size. The elastic deformation of the bearing sleeve made of polymeric material and the pressure distribution in a lubricating film are obtained through an iterative solution of the equation of the Cosserat elasticity and the modified Reynolds’ equations with considering the boundary slippage. The effect of bearing size and Cosserat characteristic lengths for torsion and bending on the lubrication performance of the small polymer journal bearings is studied using the proposed Cosserat elastohydrodynamic lubrication model. It was found that the small changes in film thickness due to the Cosserat effect can result in large changes in film pressure. The Cosserat characteristic length of bending possesses a significant effect on the lubrication behaviors of the journal bearings, because the size effect is mainly caused by the increased apparent modulus due to the bending elastic deformation of the bearing sleeve. The boundary slip behaviors dependent on the Cosserat characteristic length are also studied using the Cosserat elastohydrodynamic model, and the numerical results show that the Cosserat characteristic length changes the optimal geometric parameters of the slip zone in terms of load carrying capacity for the small polymer journal bearings.

References

References
1.
Ahn
,
B. K.
,
Lee
,
D. W.
,
Israelachvili
,
J. N.
, and
Waite
,
J. H.
,
2014
, “
Surface-Initiated Self-Healing of Polymers in Aqueous Media
,”
Nat. Mater.
,
13
(
9
), pp.
867
872
.
2.
Olabisi
,
O.
, and
Adewale
,
K.
,
2016
,
Handbook of Thermoplastics
,
CRC Press
,
Boca Raton, FL
.
3.
Zhou
,
J.
,
Blair
,
B.
,
Argires
,
J.
, and
Pitsch
,
D.
,
2015
, “
Experimental Performance Study of a High Speed Oil Lubricated Polymer Thrust Bearing
,”
Lubricants
,
3
(
1
), pp.
3
13
.
4.
Su
,
B. B.
,
Huang
,
L. R.
,
Huang
,
W.
, and
Wang
,
X. L.
,
2017
, “
The Load Carrying Capacity of Textured Sliding Bearings With Elastic Deformation
,”
Tribol. Int.
,
109
(
5
), pp.
86
96
.
5.
Shi
,
X.
,
Kida
,
K.
, and
Kashima
,
Y.
,
2014
, “
Surface Crack and Wear of PPS Polymer Thrust Bearings Under Rolling Contact Fatigue in Water
,”
Mater. Res. Innov.
,
18
(
sup5
), pp.
42
47
.
6.
Repka
,
M.
,
Dörr
,
N.
,
Brenner
,
J.
,
Gabler
,
C.
,
Mcaleese
,
C.
,
Ishigo
,
O.
, and
Koshima
,
M.
,
2017
, “
Lubricant-Surface Interactions of Polymer-Coated Engine Journal Bearings
,”
Tribol. Int.
,
109
(
5
), pp.
519
528
.
7.
Vakis
,
A. I.
,
Yastrebov
,
V. A.
,
Scheibert
,
J.
,
2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,”
Tribol. Int.
,
125
(
9
), pp.
169
199
.
8.
Stupkiewicz
,
S.
,
Lengiewicz
,
J.
,
Sadowski
,
P.
, and
Kucharski
,
S.
,
2016
, “
Finite Deformation Effects in Soft Elastohydrodynamic Lubrication Problems
,”
Tribol. Int.
,
93
(
SI
), pp.
511
522
.
9.
Marx
,
N.
,
Guegan
,
J.
, and
Spikes
,
H. A.
,
2016
, “
Elastohydrodynamic Film Thickness of Soft EHL Contacts Using Optical Interferometry
,”
Tribol. Int.
,
99
(
7
), pp.
267
277
.
10.
Rueger
,
Z.
, and
Lakes
,
R. S.
,
2018
, “
Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice
,”
Phys. Rev. Lett.
,
120
(
6
), p.
065501
.
11.
Lakes
,
R. S.
, and
Drugan
,
W.
,
2015
, “
Bending of a Cosserat Elastic Bar of Square Cross Section: Theory and Experiment
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091002
.
12.
Rueger
,
Z.
, and
Lakes
,
R. S.
,
2017
, “
Strong Cosserat Elastic Effects in a Unidirectional Composite
,”
Z. Angew. Math. Phys
,
68
(
3
), pp.
54
63
.
13.
Johnson
,
K. L.
,
1970
, “
Regimes of Elastohydrodynamic Lubrication
,”
SAGE J. Mech. Eng. Sci.
,
12
(
1
), pp.
9
16
.
14.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1979
, “
Minimum Film Thickness in Elliptical Contacts for Different Regimes of Fluid Film Lubrication
,”
Proc. Fifth Leeds-Lyon Symp. on Tribo. on “Elastohydrodynamics and Related Topics”
,
Burry St. Edmunds, Suffolk
,
Oct. 1
, pp.
22
27
. Mechanical Engineering Publications.
15.
Esfahanian
,
M.
, and
Hamrock
,
B. J.
,
1991
, “
Fluid-Film Lubrication Regimes Revisited
,”
Tribol. Trans.
,
34
(
4
), pp.
628
632
.
16.
Hamrock
,
B. J.
,
1994
,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill Inc
,
New York
.
17.
Hooke
,
C. J.
,
1988
, “
Calculation of Clearances in Soft Point Contacts
,”
ASME J. Tribol.
,
110
(
1
), pp.
167
173
.
18.
Hooke
,
C. J.
,
1995
, “
The Elastohydrodynamic Lubrication of Elliptical Point Contacts Operating in the Isoviscous Region
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
209
(
4
), pp.
225
234
.
19.
Dowson
,
D.
, and
Ehret
,
P.
,
1999
, “
Present and Future Studies in Elastohydrodynamics
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
213
(
J5
), pp.
317
333
.
20.
Etsion
,
I.
,
2013
, “
Modeling of Surface Texturing in Hydrodynamic Lubrication
,”
Friction
,
1
(
3
), pp.
195
209
.
21.
Yagi
,
K.
, and
Sugimura
,
J.
,
2013
, “
Elastic Deformation in Thin Film Hydrodynamic Lubrication
,”
Tribol. Int.
,
59
(
SI
), pp.
170
180
.
22.
Yagi
,
K.
, and
Sugimura
,
J.
,
2013
, “
Elastohydrodynamic Simulation of Rayleigh Step Bearings in Thin Film Hydrodynamic Lubrication
,”
Tribol. Int.
,
64
(
8
), pp.
204
214
.
23.
Shinkarenko
,
A.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2009
, “
The Effect of Surface Texturing in Soft Elasto-Hydrodynamic Lubrication
,”
Tribol. Int.
,
42
(
2
), pp.
284
292
.
24.
Shinkarenko
,
A.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2009
, “
The Effect of Elastomer Surface Texturing in Soft Elasto-Hydrodynamic Lubrication
,”
Tribol. Lett.
,
36
(
2
), pp.
95
103
.
25.
Myers
,
T. G.
,
Hall
,
R. W.
,
Savage
,
P. H.
, and
Gaskell
,
P. H.
,
1991
, “
The Transition Region of Elastohy-Drodynamic Lubrication
,”
Proc. R. Soc. Lond. Ser. A Math. Phys.
,
432
(
1886
), pp.
467
479
.
26.
de Vicente
,
J.
,
Stokes
,
J. R.
, and
Spikes
,
H. A.
,
2005
, “
The Frictional Properties of Newtonian Fluids in a Rolling-Sliding Soft-EHL Contact
,”
Tribol. Lett.
,
20
(
3-4
), pp.
273
285
.
27.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
28.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
(
5
), pp.
1060
1067
.
29.
Bucsek
,
A. N.
,
Alisafaei
,
F.
,
Han
,
C. S.
, and
Lakhera
,
N.
,
2016
, “
On Thresholds in the Indentation Size Effect of Polymers
,”
Polym. Bull.
,
73
(
3
), pp.
763
772
.
30.
Zhang
,
S.
,
Xie
,
Z. Q.
,
Chen
,
B. S.
, and
Zhang
,
H. W.
,
2013
, “
Finite Element Analysis of 3D Elastic-plastic Frictional Contact Problem for Cosserat Materials
,”
Comput. Mech.
,
51
(
6
), pp.
911
925
.
31.
Bigoni
,
D.
, and
Drugan
,
W. J.
,
2007
, “
Analytical Derivation of Cosserat Moduli Via Homogenization of Heterogeneous Elastic Materials
,”
ASME J. Appl. Mech.
,
74
(
4
), pp.
741
753
.
32.
Nikolov
,
S.
,
Han
,
C. S.
, and
Raabe
,
D.
,
2007
, “
On the Origin of Size Effects in Small-Strain Elasticity of Solid Polymers
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1582
1592
.
33.
Yang
,
Z.
,
SanAndres
,
L.
, and
Childs
,
D. W.
,
1995
, “
Thermohydrodynamic Analysis of Process-Liquid Hydrostatic Journal Bearings in Turbulent Regime, Part II: Numerical Solution and Results
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
679
684
.
34.
Trachsel
,
M.
,
Pittini
,
R.
, and
Dual
,
J.
,
2018
, “
Evaluation and Quantification of Friction Using Ionic Liquids in Small, Self Lubricating Journal Bearings
,”
Tribol. Int.
,
122
(
6
), pp.
15
22
.
35.
Trachsel
,
M.
,
Pittini
,
R.
, and
Dual
,
J.
,
2016
, “
Friction and 2D Position Measurements in Small Journal Bearings
,”
Tribol. Int.
,
102
(
10
), pp.
555
560
.
36.
Wu
,
C. W.
,
Ma
,
G. J.
,
Zhou
,
P.
, and
Wu
,
C. D.
,
2006
, “
Low Friction and High Load Support Capacity of Slider Bearing With a Mixed Slip Surface
,”
ASME J. Tribol.
,
128
(
4
), pp.
904
907
.
37.
Aurelian
,
F.
,
Patrick
,
M.
, and
Mohamed
,
H.
,
2011
, “
Wall Slip Effects in (Elasto) Hydrodynamic Journal Bearings
,”
Tribol. Int.
,
44
(
7-8
), pp.
868
877
.
38.
Senatore
,
A.
, and
Rao
,
T. V. V. L. N.
,
2018
, “
Partial Slip Texture Slider and Journal Bearing Lubricated With Newtonian Fluids: A Review
,”
ASME J. Tribol.
,
140
(
4
), p.
040801
.
39.
Fortier
,
A. E.
, and
Salant
,
R. F.
,
2005
, “
Numerical Analysis of a Journal Bearing With a Heterogeneous Slip/No-Slip Surface
,”
ASME J. Tribol.
,
127
(
4
), pp.
820
825
.
40.
Zhu
,
B.
,
Yang
,
H. W.
, and
Chen
,
J. F.
,
2015
, “
A Novel Finite Element Time Domain Method for Nonlinear Maxwell’s Equations Based on the Parametric Quadratic Programming Method
,”
Microw. Opt. Technol. Lett.
,
57
(
7
), pp.
1640
1645
.
41.
Ma
,
G. J.
,
Wu
,
C. W.
, and
Zhou
,
P.
,
2007
, “
Multi-Linearity Algorithm for Wall Slip in Two-Dimensional Gap Flow
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2469
2484
.
42.
Zhu
,
B.
,
Li
,
Y. P.
,
Wang
,
W. G.
, and
Lei
,
M. K.
,
2019
, “
Boundary Slippage Modeling and Optimization of Hydrophobic Tilting Pad Thrust Bearing With Elastic Deformation
,”
Tribol. Int.
,
136
(
8
), pp.
299
316
.
43.
Huebner
,
K. H.
, and
Thornton
,
E. A.
,
1975
,
The Finite Element Method for Engineers
,
Wiley
,
New York
.
44.
Oh
,
K. P.
, and
Huebner
,
K. H.
,
1973
, “
Solution of the Elastohydrodynamic Finite Journal Bearing Problem
,”
ASME J. Lubr. Technol.
,
95
(
3
), pp.
187
194
.
45.
Cameron
,
A.
,
1981
,
Basic Lubrication Theory
,
3rd
ed.,
Ellis Horwood Ltd
.,
Chichester
.
46.
Burzynski
,
S.
,
Chroscielewski
,
J.
,
Daszkiewicz
,
K.
, and
Witkowski
,
W.
,
2018
, “
Elastoplastic Nonlinear FEM Analysis of FGM Shells of Cosserat Type
,”
Compos. Part B Eng.
,
154
(
12
), pp.
478
491
.
47.
Gauthier
,
R. D.
, and
Jahsman
,
W. E.
,
1975
, “
A Quest for Micropolar Elastic Constants
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
369
374
.
48.
Bair
,
S.
, and
Winer
,
W. O.
,
1992
, “
The High Pressure High Shear Stress Rheology of Liquid Lubricants
,”
ASME J. Tribol.
,
114
(
1
), pp.
1
13
.
49.
Östensen
,
J. O.
,
Wikstrom
,
V.
, and
Höglund
,
E.
,
1992
, “
Interaction Effects Between Temperature, Pressure and Type of Base Oil on Lubricant Shear Strength Coefficient
,”
Tribologia.
,
11
, pp.
123
132
.
50.
Bair
,
S.
, and
Winer
,
W. O.
,
1979
, “
Shear Strength Measurements of Lubricants at High Pressure
,”
ASME J. Lubr. Technol.
,
101
(
3
), pp.
251
257
.
51.
Höglund
,
E.
,
1989
, “
The Relationship Between Lubricant Shear Strength and Chemical Composition of the Base Oil
,”
Wear
,
130
(
1
), pp.
213
224
.
52.
Craig
,
V. S. J.
,
Neto
,
C.
, and
Williams
,
D. R. M.
,
2001
, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
,”
Phys. Rev. Lett.
,
87
(
5
), pp.
054504
.
53.
Zhu
,
Y. X.
, and
Granick
,
S.
,
2002
, “
Limits of the Hydrodynamic No-Slip Boundary Condition
,”
Phys. Rev. Lett.
,
88
(
10
), pp.
106102
.
54.
Bonaccurso
,
E.
,
Kappl
,
M.
, and
Butt
,
H. J.
,
2002
, “
Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects
,”
Phys. Rev. Lett.
,
88
(
7
), pp.
076103
.
55.
Bair
,
S.
, and
Winer
,
W. O.
,
1990
, “
The High Shear Stress Rheology of Liquid Lubricants at Pressures of 2 to 200 MPa
,”
ASME J. Tribol.
,
112
(
2
), pp.
246
252
.
56.
Wikstrom
,
V.
, and
Höglund
,
E.
,
1994
, “
Investigation of Parameter Affecting the Limiting Shear Stress-Pressure Coefficient: A New Model Incorporating Temperature
,”
ASME J. Tribol.
,
116
(
3
), pp.
612
620
.
57.
Wilson
,
W. R. D.
, and
Huang
,
X. B.
,
1989
, “
Viscoplastic Behavior of a Silicone Oil in a Metalforming Inlet Zone
,”
ASME J. Tribol.
,
111
(
4
), pp.
585
590
.
58.
Kato
,
K.
,
Iwasaki
,
T.
,
Kato
,
M.
, and
Inoue
,
K.
,
1993
, “
Evaluation of Limiting Shear Stress of Lubricants by Roller Test
,”
JSME Int. J. Ser. C
,
36
(
4
), pp.
512
522
.
This content is only available via PDF.
You do not currently have access to this content.