Abstract

In this paper, the complex two-phase flow during oil-jet impingement on a rotating spur gear is investigated using the meshless smoothed particle hydrodynamics (SPH) method. On the basis of a two-dimensional setup, a comparison of single-phase SPH to multiphase SPH simulations and the application of the volume of fluid method is drawn. The results of the different approaches are compared regarding the predicted flow phenomenology and computational effort. It is shown that the application of single-phase SPH is justified and that this approach is superior in computational time, enabling faster simulations. In the next step, a three-dimensional single-phase SPH setup is exploited to predict the flow phenomena during the impingement of an oil-jet on a spur gear for three different jet inclination angles. The oil’s flow phenomenology is described and the obtained resistance torque is presented. Thereby, a significant effect of the inclination angle on the oil spreading and splashing process as well as the resistance torque is identified.

References

1.
Keller
,
M. C.
,
Braun
,
S.
,
Wieth
,
L.
,
Chaussonnet
,
G.
,
Dauch
,
T. F.
,
Koch
,
R.
,
Schwitzke
,
C.
, and
Bauer
,
H.-J.
,
2017
, “
Smoothed Particle Hydrodynamics Simulation of Oil-Jet Gear Interaction
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p.
V02BT41A019
.
2.
Akin
,
L. S.
,
Mross
,
J. J.
, and
Townsend
,
D. P.
,
1975
, “
Study of Lubricant Jet Flow Phenomena in Spur Gears
,”
ASME J. Lubr. Tech.
,
97
(
2
), pp.
283
288
.
3.
Townsend
,
D. P.
, and
Akin
,
L. S.
,
1978
, “
Study of Lubricant Jet Flow Phenomena in Spur Gears—Out of Mesh Condition
,”
ASME J. Mech. Des.
,
100
(
1
), pp.
61
68
.
4.
Schober
,
H.
,
1983
, “
Untersuchungen zur Einspritzschmierung der Stirnradgetriebe
,” Ph.D thesis,
Institut für Maschinenkonstruktion und Getriebebau, Universität Stuttgart
,
Stuttgart, Germany
.
5.
Massini
,
D.
,
Fondelli
,
T.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Leonardi
,
F.
,
2016
, “
High Speed Visualizations of Oil Jet Lubrication for Aero-Engine Gearboxes
,”
Energy Procedia
,
101
, pp.
1248
1255
.
ATI 2016 – 71st Conference of the Italian Thermal Machines Engineering Association.
6.
Yazdani
,
M.
, and
Soteriou
,
M. C.
,
2014
, “
A Novel Approach for Modeling the Multiscale Thermo-Fluids of Geared Systems
,”
Int. J. Heat. Mass. Transfer.
,
72
, pp.
517
530
.
7.
Fondelli
,
T.
,
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
, and
Cipolla
,
L.
,
2015
, “
Numerical Simulation of Oil Jet Lubrication for High Speed Gears
,”
Int. J. Aerospace Eng.
2015
, pp.
1
13
.
8.
Fondelli
,
T.
,
Andreini
,
A.
,
Da
,
Soghe
, and
Cipolla
,
L.
,
2015
, “
Volume of Fluid (VOF) Analysis of Oil-Jet Lubrication for High-Speed Spur Gears Using An Adaptive Meshing Approach
,”
Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
,
Montreal, Quebec, Canada
,
June 15–19
, Vol. 7A: Structures and Dynamics, p.
V07AT31A006
.
9.
Keller
,
M. C.
,
Braun
,
S.
,
Wieth
,
L.
,
Chaussonnet
,
G.
,
Dauch
,
T.
,
Koch
,
R.
,
Höfler
,
C.
, and
Bauer
,
H.-J.
,
2016
, “
Numerical Modeling of Oil-Jet Lubrication for Spur Gears Using Smoothed Particle Hydrodynamics
,”
Proceedings of the 11th International SPHERIC Workshop
,
Munich, Germany
,
June 13–16
, pp.
69
76
.
10.
Chaussonnet
,
G.
,
Braun
,
S.
,
Dauch
,
T.
,
Keller
,
M.
,
Sänger
,
A.
,
Jakobs
,
T.
,
Koch
,
R.
,
Kolb
,
T.
, and
Bauer
,
H.-J.
,
2019
, “
Toward the Development of a Virtual Spray Test-Rig Using the Smoothed Particle Hydrodynamics Method
,”
Comput. Fluids
,
180
, pp.
68
81
.
11.
Wieth
,
L.
,
Kelemen
,
K.
,
Braun
,
S.
,
Koch
,
R.
,
Bauer
,
H.-J.
, and
Schuchmann
,
H. P.
,
2016
, “
Smoothed Particle Hydrodynamics (SPH) Simulation of a High-Pressure Homogenization Process
,”
Microfluidics and Nanofluidics
,
20
(
2
), pp.
1
18
.
12.
Dauch
,
T.
,
Braun
,
S.
,
Wieth
,
L.
,
Chaussonnet
,
G.
,
Keller
,
M.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2016
, “
Computation of Liquid Fuel Atomization and Mixing by Means of the SPH Method: Application to A Jet Engine Fuel Nozzle
,”
Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, p.
V04AT04A001
.
13.
Höfler
,
C.
,
Braun
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2012
, “
Modeling Spray Formation in Gas Turbines – A New Meshless Approach
,”
ASME J. Eng. Gas. Turbines. Power
,
135
(
1
), p.
011503
.
14.
Braun
,
S.
,
Wieth
,
L.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2015
, “
A Framework for Permeable Boundary Conditions in SPH: Inlet, Outlet, Periodicity
,”
Proceedings of the 10th International SPHERIC Workshop
,
Parma, Italy
,
June 15–18
, pp.
237
243
.
15.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics – Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
16.
Lucy
,
L. B.
,
1977, Dec.
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.
17.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.
18.
Shadloo
,
M.
,
Oger
,
G.
, and
Touzé
,
D. L.
,
2016
, “
Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges
,”
Computers & Fluids
,
136
, pp.
11
34
.
19.
Violeau
,
D.
, and
Rogers
,
B. D.
,
2016
, “
Smoothed Particle Hydrodynamics (SPH) for Free-Surface Flows: Past, Present and Future
,”
J. Hydraul. Res.
,
54
(
1
), pp.
1
26
.
20.
Hu
,
X.
, and
Adams
,
N.
,
2007
, “
An Incompressible Multi-Phase SPH Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
264
278
.
21.
Colagrossi
,
A.
, and
Antuono
,
M.
,
2009
, “
Theoretical Considerations on the Free-Surface Role in the Smoothed-Particle-Hydrodynamics Model
,”
Phys. Rev. E
,
79
(
5
), p.
056701
.
22.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(
2
), pp.
448
475
.
23.
Szewc
,
K.
,
Pozorski
,
J.
, and
Minier
,
J.-P.
,
2012
, “
Analysis of the Incompressibility Constraint in the Smoothed Particle Hydrodynamics Method
,”
Int. J. Numer. Methods Eng.
,
92
(
4
), pp.
343
369
.
24.
Maciá
,
F.
,
Antuono
,
M.
,
González
,
L. M.
, and
Colagrossi
,
A.
,
2011
, “
Theoretical Analysis of the No-Slip Boundary Condition Enforcement in SPH Methods
,”
Prog. Theor. Phys.
,
125
(
6
), pp.
1091
1121
.
25.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N.
,
2010
, “
A New Surface-Tension Formulation for Multi-Phase SPH using a Reproducing Divergence Approximation
,”
J. Comput. Phys.
,
229
(
13
), pp.
5011
5021
.
26.
Wieth
,
L.
,
Braun
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2014
, “
Modeling of Liquid-Wall Interaction using the Smoothed Particle Hydrodynamics (SPH) Method
,”
26th Annual Conference on Liquid Atomization and Spray Systems
,
Bremen, Germany
,
Sept. 8–10
.
27.
Violeau
,
D.
, and
Issa
,
R.
,
2006
, “
Numerical Modelling of Complex Turbulent Free-Surface Flows With the SPH Method: An Overview
,”
Int. J. Numer. Methods Fluids
,
53
(
2
), pp.
277
304
.
28.
Mascio
,
A. D.
,
Antuono
,
M.
,
Colagrossi
,
A.
, and
Marrone
,
S.
,
2017, Mar.
, “
Smoothed Particle Hydrodynamics Method from A Large Eddy Simulation Perspective
,”
Phys. Fluids.
,
29
(
3
), p.
035102
.
29.
Gomez-Gesteira
,
M.
,
Rogers
,
B. D.
,
Dalrymple
,
R. A.
, and
Crespo
,
A. J.
,
2010
, “
State-Of-The-Art of Classical SPH for Free-Surface Flows
,”
J. Hydraul. Res.
,
48
(
sup1
), pp.
6
27
.
30.
Ozbulut
,
M.
,
Yildiz
,
M.
, and
Goren
,
O.
,
2014
, “
A Numerical Investigation into the Correction Algorithms for SPH Method in Modeling Violent Free Surface Flows
,”
Int. J. Mech. Sci.
,
79
, pp.
56
65
.
31.
Broumand
,
M.
, and
Birouk
,
M.
,
2016
, “
Liquid Jet in A Subsonic Gaseous Crossflow: Recent Progress and Remaining Challenges
,”
Prog. Energy. Combust. Sci.
,
57
, pp.
1
29
.
32.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
,
42
(
12
), pp.
2529
2540
.
33.
Wu
,
P.-K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power.
,
13
(
1
), pp.
64
73
.
34.
DeWinter
,
A.
, and
Blok
,
H.
,
1974
, “
Fling-Off Cooling of Gear Teeth
,”
ASME J. Eng. Ind.
,
96
(
1
), pp.
60
70
.
35.
Al-Shibl
,
K.
,
Simmons
,
K.
, and
Eastwick
,
C. N.
,
2007
, “
Modelling Windage Power Loss From An Enclosed Spur Gear
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
3
), pp.
331
341
.
36.
Massini
,
D.
,
Fondelli
,
T.
,
Andreini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Leonardi
,
F.
,
2018
, “
Experimental and Numerical Investigation on Windage Power Losses in High Speed Gears
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082508
.
37.
ANSYS, Inc.
,
2015
, ANSYS® Fluent, Release 16.1, Fluent User’s Guide.
38.
Braun
,
S.
,
Krug
,
M.
,
Wieth
,
L.
,
Höfler
,
C.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2015
, “
Simulation of Primary Atomization: Assessment of the Smoothed Particle Hydrodynamics (SPH) Method
,”
13th Triennial International Conference on Liquid Atomization and Spray Systems
,
Tainan, Taiwan
,
Aug. 23–27
, p.
V05BT15A034
.
You do not currently have access to this content.