Tribological characterizations of composites are primarily focused on the evaluation of wear resistance (WR) and/or the coefficient of friction, although roughness of abraded surfaces (RASs) is one of the key factors that also determines tribo-performances. This study is aimed at modeling RAS in conjunction with WR considering experimental results of Al-matrix/alumina composites performed under two-body abrasion following the central composite design method. Influences of different in situ and ex situ parameters on tribo-responses were analyzed and modeled using analysis of variance, the response surface method, and multi-response optimization. The WR of the selected system was maximized at around 15 wt% alumina at which RAS was also the highest. The positive role of reinforcement on WR and its adverse effect on RAS were explained by micro-mechanisms of abrasion.

References

References
1.
Borgonovo
,
C.
, and
Apelian
,
D.
,
2011
, “
Manufacture of Aluminum Nanocomposites: A Critical Review
,”
Mater. Sci. Forum
,
678
, pp.
1
22
.
2.
Roy
,
D.
,
Ghosh
,
S.
,
Basumallick
,
A.
, and
Basu
,
B.
,
2006
, “
Preparation of Fe-Aluminide Reinforced in Situ Metal Matrix Composites by Reactive hot Pressing
,”
Mater. Sci. Eng. A
,
415
(
1–2
), pp.
202
206
.
3.
Hesabi
,
Z. R.
,
Simchi
,
A.
, and
Reihani
,
S. M. S.
,
2006
, “
Structural Evolution During Mechanical Milling of Nanometric and Micrometric Al2O3 Reinforced Al Matrix Composites
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
159
168
.
4.
Kumar
,
P. R. S.
,
Kumaran
,
S.
,
Rao
,
T. S.
, and
Natarajan
,
S.
,
2010
, “
High Temperature Sliding Wear Behavior of Press-Extruded AA6061/Fly Ash Composite
,”
Mater. Sci. Eng. A
,
527
(
6
), pp.
1501
1509
.
5.
Prabu
,
S. B.
,
Karunamoorthy
,
L.
,
Kathiresan
,
S.
, and
Mohan
,
B.
,
2006
, “
Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite
,”
J. Mater. Process. Technol.
,
171
(
2
), pp.
268
273
.
6.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2014
, “
Ultrasonic Cavitation Based Processing of Metal Matrix Nanocomposites: An Overview
,”
Adv. Mater. Res.
,
1042
, pp.
58
64
.
7.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
1999
, “
Metal Matrix Composites: Production by the Stir Casting Method
,”
J. Mater. Process. Technol.
,
92
, pp.
1
7
.
8.
Kumar
,
R.
, and
Dhiman
,
S.
,
2013
, “
A Study of Sliding Wear Behaviors of Al-7075 Alloy and Al-7075 Hybrid Composite by Response Surface Methodology Analysis
,”
Mater. Des.
,
50
, pp.
351
359
.
9.
Karunanithi
,
R.
,
Bera
,
S.
, and
Ghosh
,
K. S.
,
2014
, “
Electrochemical Behaviour of TiO2 Reinforced Al 7075 Composite
,”
Mater. Sci. Eng. B
,
190
, pp.
133
143
.
10.
Mobasherpour
,
I.
,
Tofigh
,
A. A.
, and
Ebrahimi
,
M.
,
2013
, “
Effect of Nano-Size Al2O3 Reinforcement on the Mechanical Behavior of Synthesis 7075 Aluminum Alloy Composites by Mechanical Alloying
,”
Mater. Chem. Phys.
,
138
(
2
), pp.
535
541
.
11.
Ahmed
,
A.
,
Neely
,
A. J.
,
Shankar
,
K.
,
Nolan
,
P.
,
Moricca
,
S.
, and
Eddowes
,
T.
,
2010
, “
Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites
,”
Metall. Mater. Trans. A
,
41
(
6
), pp.
1582
1591
.
12.
Dursun
,
T.
, and
Soutis
,
C.
,
2014
, “
Recent Developments in Advanced Aircraft Aluminium Alloys
,”
Mater. Des.
,
56
, pp.
862
871
.
13.
Chawla
,
N. C. K. K.
, and
Chawla
,
K. K.
,
2006
, “
“Metal-Matrix Composites in Ground Transportation
,”
J. Minerals
,
Met. Mater. Soc.
,
58
(
11
), pp.
67
70
.
14.
Miracle
,
D. B.
,
2005
, “
Metal Matrix Composites – From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
(
15
), pp.
2526
2540
.
15.
Surappa
,
M. K.
,
2003
, “
Aluminium Matrix Composites: Challenges and Opportunities
,”
Sadhana
,
28
(
1
), pp.
319
334
.
16.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2008
, “
Effect of Submicron Size Al2O3 Particulates on Microstructural and Tensile Properties of Elemental Mg
,”
J. Alloys Compd.
,
457
(
1
), pp.
244
250
.
17.
Kok
,
M.
,
2005
, “
Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites
,”
J. Mater. Process. Technol.
,
161
(
3
), pp.
381
387
.
18.
Mondal
,
D. P.
,
Das
,
S.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
,
1998
, “
Abrasive Wear of Al Alloy–Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
,
223
(
1
), pp.
131
138
.
19.
Sahin
,
Y.
, and
Özdin
,
K.
,
2008
, “
A Model for the Abrasive Wear Behaviour of Aluminium Based Composites
,”
Mater. Des.
,
29
(
3
), pp.
728
733
.
20.
Suresha
,
B.
,
Seetharamu
,
S.
, and
Kumaran
,
P. S.
,
2009
, “
Investigations on the Influence of Graphite Filler on Dry Sliding Wear and Abrasive Wear Behaviour of Carbon Fabric Reinforced Epoxy Composites
,”
Wear
,
267
(
9
), pp.
1405
1414
.
21.
Narayanaswamy
,
B.
,
Hodgson
,
P.
, and
Beladi
,
H.
,
2016
, “
Effect of Particle Characteristics on the Two-Body Abrasive Wear Behaviour of a Pearlitic Steel
,”
Wear
,
354
, pp.
41
52
.
22.
Kumar
,
A.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
Modeling the Abrasive Wear Characteristics of In-Situ Synthesized Al–4.5% Cu/TiC Composites
,”
Wear
,
306
(
1
), pp.
170
178
.
23.
Deuis
,
R. L.
,
Subramanian
,
C.
, and
Yellup
,
J. M.
,
1996
, “
Abrasive Wear of Aluminium Composites – A Review
,”
Wear
,
201
(
1–2
), pp.
132
144
.
24.
Gates
,
J. D.
,
1998
, “
Two-body and Three-Body Abrasion: A Critical Discussion
,”
Wear
,
214
(
1
), pp.
139
146
.
25.
Lin
,
S.-J.
, and
Liu
,
K.-S.
,
1988
, “
Effect of Aging on Abrasion Rate in an Al-Zn-Mg-SiC Composite
,”
Wear
,
121
(
1
), pp.
1
14
.
26.
Sheu
,
C.-Y.
, and
Lin
,
S.-J.
,
1996
, “
Particle Size Effects on the Abrasive Wear of 20 vol% SiCp/7075Al Composites
,”
Scr. Mater.
,
35
(
11
), pp.
1271
1276
.
27.
Das
,
S.
,
Das
,
S.
, and
Das
,
K.
,
2007
, “
Abrasive Wear of Zircon Sand and Alumina Reinforced Al–4.5 wt% Cu Alloy Matrix Composites – A Comparative Study
,”
Compos. Sci. Technol.
,
67
(
3
), pp.
746
751
.
28.
Das
,
S.
,
Mondal
,
D. P.
,
Sawla
,
S.
, and
Dixit
,
S.
,
2002
, “
High Stress Abrasive Wear Mechanism of LM13-SiC Composite Under Varying Experimental Conditions
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
3031
3044
.
29.
Kök
,
M.
, and
Özdin
,
K.
,
2007
, “
Wear Resistance of Aluminium Alloy and Its Composites Reinforced by Al2O3 Particles
,”
J. Mater. Process. Technol.
,
183
(
2
), pp.
301
309
.
30.
Huei-Long
,
L.
,
Wun-Hwa
,
L.
, and
Chan
,
S. L.-I.
,
1992
, “
Abrasive Wear of Powder Metallurgy Al Alloy 6061-SiC Particle Composites
,”
Wear
,
159
(
2
), pp.
223
231
.
31.
Al-Rubaie
,
K. S.
,
Yoshimura
,
H. N.
, and
de Mello
,
J. D. B.
,
1999
, “
Two-body Abrasive Wear of Al–SiC Composites
,”
Wear
,
233
, pp.
444
454
.
32.
Yılmaz
,
O.
, and
Buytoz
,
S.
,
2001
, “
Abrasive Wear of Al2O3-Reinforced Aluminium-Based MMCs
,”
Compos. Sci. Technol.
,
61
(
16
), pp.
2381
2392
.
33.
Kumar
,
S.
, and
Balasubramanian
,
V.
,
2010
, “
Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075 Al/SiCp P/M Composites – A Statistical Analysis
,”
Tribol. Int.
,
43
(
1
), pp.
414
422
.
34.
Şahin
,
Y.
,
2010
, “
Abrasive Wear Behaviour of SiC/2014 Aluminium Composite
,”
Tribol. Int.
,
43
(
5
), pp.
939
943
.
35.
Yigezu
,
B. S.
,
Mahapatra
,
M. M.
, and
Jha
,
P. K.
,
2013
, “
On Modeling the Abrasive Wear Characteristics of In Situ Al–12% Si/TiC Composites
,”
Mater. Des.
,
50
, pp.
277
284
.
36.
Box
,
G. E. P.
, and
Wilson
,
K. P.
,
1951
, “
On the Experimental Attainment of Optimum Condition
,”
J. Roy. Stat. Soc.
13
(
1
), pp.
1
38
.
37.
Koksal
,
S.
,
Ficici
,
F.
,
Kayikci
,
R.
, and
Savas
,
O.
,
2012
, “
Experimental Optimization of Dry Sliding Wear Behavior of In Situ AlB 2/Al Composite Based on Taguchi’s Method
,”
Mater. Des.
,
42
, pp.
124
130
.
38.
Baskaran
,
S.
,
Anandakrishnan
,
V.
, and
Duraiselvam
,
M.
,
2014
, “
Investigations on Dry Sliding Wear Behavior of In Situ Casted AA7075–TiC Metal Matrix Composites by Using Taguchi Technique
,”
Mater. Des.
,
60
, pp.
184
192
.
39.
Bo
,
Z.
, and
You-Bai
,
X.
,
1989
, “
Two-Body Microcutting Wear Model Part I: Two-Dimensional Roughness Model
,”
Wear
,
129
(
1
), pp.
37
48
.
40.
Diler
,
E. A.
, and
Ipek
,
R.
,
2013
, “
Main and Interaction Effects of Matrix Particle Size, Reinforcement Particle Size and Volume Fraction on Wear Characteristics of Al–SiCp Composites Using Central Composite Design
,”
Compos. Part B: Eng.
,
50
, pp.
371
380
.
41.
Umanath
,
K.
,
Palanikumar
,
K.
, and
Selvamani
,
S. T.
,
2013
, “
Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites
,”
Compos. Part B: Eng.
,
53
, pp.
159
168
.
42.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Tribological Properties of Al 7075 Alloy and 7075/ Al2O3 Composite Under Two-Body Abrasion: A Statistical Approach
,”
ASME J. Tribol.
,
140
(
5
), p.
051602
.
43.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
High Stress Abrasive Wear Characteristics of Al 7075 Alloy and 7075/Al2O3 Composite
,”
Measurement
,
127
, pp.
42
62
.
44.
Akbari
,
M. K.
,
Mirzaee
,
O.
, and
Baharvandi
,
H. R.
,
2013
, “
Fabrication and Study on Mechanical Properties and Fracture Behavior of Nanometric Al2O3 Particle-Reinforced A356 Composites Focusing on the Parameters of Vortex Method
,”
Mater. Des.
,
46
, pp.
199
205
.
45.
Sardar
,
S.
,
Karmakar
,
S. K.
, and
Das
,
D.
,
2018
, “
Evaluation of Abrasive Wear Resistance of Al2O3/7075 Composite by Taguchi Experimental Design Technique
,”
Trans. Indian Inst. Met.
,
71
(
8
), pp.
1847
1858
.
46.
Yilmaz
,
S. O.
,
2007
, “
Comparison on Abrasive Wear of SiCrFe, CrFeC and Al2O3 Reinforced Al2024 MMCs
,”
Tribol. Int.
,
40
(
3
), pp.
441
452
.
47.
Ezatpour
,
H. R.
,
Sajjadi
,
S. A.
,
Sabzevar
,
M. H.
, and
Huang
,
Y.
,
2014
, “
Investigation of Microstructure and Mechanical Properties of Al6061-Nanocomposite Fabricated by Stir Casting
,”
Mater. Des.
,
55
, pp.
921
928
.
48.
Sahin
,
Y.
,
2003
, “
Preparation and Some Properties of SiC Particle Reinforced Aluminium Alloy Composites
,”
Mater. Des.
,
24
(
8
), pp.
671
679
.
49.
Hutchings
,
I. M.
,
1994
, “
Tribological Properties of Metal Matrix Composites
,”
Mater. Sci. Technol.
,
10
(
6
), pp.
513
517
.
50.
Rao
,
A. K. P.
,
Das
,
K.
,
Murty
,
B. S.
, and
Chakraborty
,
M.
,
2004
, “
Effect of Grain Refinement on Wear Properties of Al and Al–7Si Alloy
,”
Wear
,
257
(
1
), pp.
148
153
.
51.
Wang
,
A. G.
, and
Hutchings
,
I. M.
,
1989
, “
Wear of Alumina Fibre–Aluminium Metal Matrix Composites by Two-Body Abrasion
,”
Mater. Sci. Technol.
,
5
(
1
), pp.
71
76
.
52.
Modi
,
O. P.
,
Yadav
,
R. P.
,
Mondal
,
D. P.
,
Dasgupta
,
R.
,
Das
,
S.
, and
Yegneswaran
,
A. H.
,
2001
, “
Abrasive Wear Behaviour of Zinc-Aluminium Alloy-10% Al2O3 Composite Through Factorial Design of Experiment
,”
J. Mater. Sci.
,
36
(
7
), pp.
1601
1607
.
53.
Rohatgi
,
P. K.
,
Guo
,
R. Q.
,
Huang
,
P.
, and
Ray
,
S.
,
1997
, “
Friction and Abrasion Resistance of Cast Aluminum Alloy-Fly Ash Composites
,”
Metall. Mater. Trans. A
,
28
(
1
), pp.
245
250
.
54.
Box
,
G. E. P.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
John Wiley & Sons
,
New York
.
55.
Bradley
,
N.
,
2007
,
The Response Surface Methodology
,
Indiana University South Bend
,
South Bend, IN
.
56.
Khuri
,
A. I.
, and
Cornell
,
J. A.
,
1996
,
Response Surfaces: Designs and Analyses
,
CRC Press
,
Boca Raton, FL
.
57.
Khuri
,
A. I.
, and
Mukhopadhyay
,
S.
,
2010
, “
Response Surface Methodology
,”
Wiley Interdiscip. Rev.: Comput. Stat.
,
2
(
2
), pp.
128
149
.
58.
Sajjadi
,
S. A.
,
Parizi
,
M. T.
,
Ezatpour
,
H. R.
, and
Sedghi
,
A.
,
2012
, “
Fabrication of A356 Composite Reinforced with Micro and Nano Al2O3 Particles by a Developed Compocasting Method and Study of Its Properties
,”
J. Alloys Compd.
,
511
(
1
), pp.
226
231
.
59.
Rao
,
C. R.
,
Rao
,
C. R.
,
Statistiker
,
M.
,
Rao
,
C. R.
, and
Rao
,
C. R.
,
1973
,
Linear Statistical Inference and Its Applications
,
Wiley
,
New York
.
60.
Ghosh
,
P. K.
,
Prasad
,
P. R.
, and
Ray
,
S.
,
1984
, “
Effect of Porosity on the Strength of Particulate Composites
,”
Z Metallkd.
,
75
(
12
), pp.
934
937
.
61.
Yu
,
S. Y.
,
Ishii
,
H.
,
Tohgo
,
K.
,
Cho
,
Y. T.
, and
Diao
,
D.
,
1997
, “
Temperature Dependence of Sliding Wear Behavior in SiC Whisker or SiC Particulate Reinforced 6061 Aluminum Alloy Composite
,”
Wear
,
213
(
1–2
), pp.
21
28
.
62.
Coulomb
,
C. A.
,
1785
, “
Memoeires de Mathematiquie et de Physique de l’ Academie Royale des Sciences
,” Mémoires de Mathématiques et de Physique de l’ Académie Royale des Sciences.
63.
Durban
,
D.
,
1999
, “
Friction and Singularities in Steady Penetration
,”
IUTAM Symposium on Non-Linear Singularities in Deformation and Flow
,
Haifa, Israel
,
Mar. 17–21
, pp.
141
154
.
Springer
,
Dordrecht, Netherlands
.
64.
Durban
,
D.
,
1979
, “
Axially Symmetric Radial Flow of Rigid/Linear-Hardening Materials
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
322
328
.
65.
Papanastasiou
,
P.
,
Durban
,
D.
, and
Lenoach
,
B.
,
2003
, “
Singular Plastic Fields in Wedge Indentation of Pressure Sensitive Solids
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2521
2534
.
66.
Bhushan
,
B.
,
2012
,
Tribology and Mechanics of Magnetic Storage Devices
,
Springer Science & Business Media
,
Berlin
.
67.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1986
,
The Friction and Lubrication of Solids (Retroactive Coverage)
,
Clarendon Press
,
Oxford
.
68.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
,
Butterworth-Heinemann
,
Oxford
.
69.
Axen
,
N.
, and
Zum Gahr
,
K. H.
,
1992
, “
Abrasive Wear of TiC-Steel Composite Clad Layers on Tool Steel
,”
Wear
,
157
(
1
), pp.
189
201
.
70.
Gahr
,
Z.
, and
H
,
K.
,
1988
, “
Modelling of Two-Body Abrasive Wear
,”
Wear
,
124
(
1
), pp.
87
103
.
71.
Clarke
,
J.
, and
Sarkar
,
A. D.
,
1981
, “
Topographical Features Observed in a Scanning Electron Microscopy Study of Aluminium Alloy Surfaces in Sliding Wear
,”
Wear
,
69
(
1
), pp.
1
23
.
72.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2016
, “
Effect of Grit Size on Two Body Abrasive Wear of Al 6082 Hybrid Composites Produced by Stir Casting Method
,”
Tribol. Int.
,
102
, pp.
52
60
.
73.
Kaushik
,
N. C.
, and
Rao
,
R. N.
,
2017
, “
Influence of Applied Load on Abrasive Wear Depth of Hybrid Gr/SiC/Al–Mg–Si Composites in a Two-Body Condition
,”
ASME J. Tribol.
,
139
(
6
), p.
061601
.
You do not currently have access to this content.