Leakage susceptibility is significant for the functionalization of engineering products, and surface topography plays a crucial role in forming the leakage channel in static sealing interface. This paper proposes a surface connectivity-based approach to predict the leakage channel in static sealing interface. The proposed approach consists of three modules including contact surface generation, leakage parameters definition, and leakage channel prediction. A high-definition metrology (HDM) instrument is adopted to measure the three-dimensional (3D) surface. The contact surface that can be considered as the sealing interface is generated by assembling the virtual gasket surface and waviness surface. Considering the spatial connectivity, two kinds of leakage parameters including connectivity parameters and correlation parameters are proposed to describe the characteristics of the contact surface. Meantime, a novel prediction algorithm is developed to directly indicate the potential leakage channel of the surface. Experimental results demonstrate that the proposed approach is valid to be accurate and effective, which can provide valuable information for surface topography and static sealing performance.

References

References
1.
Flitney
,
R. K.
,
2011
,
Seals and Sealing Handbook
,
Elsevier
,
Oxford, UK
.
2.
Lebeck
,
A. O.
,
1981
, “
Hydrodynamic Lubrication in Wavy Contacting Face Seals—A Two Dimensional Model
,”
ASME J. Lubr. Technol.
,
103
(
4
), pp.
578
586
.
3.
Robbe-Valloire
,
F.
, and
Prat
,
M.
,
2008
, “
A Model for Face-Turned Surface Microgeometry. Application to the Analysis of Metallic Static Seals
,”
Wear
,
264
(
11–12
), pp.
980
989
.
4.
Aharony
,
A.
, and
Stauffer
,
D.
,
2003
,
Introduction to Percolation Theory
,
Taylor & Francis
,
London
.
5.
Persson
,
B. N. J.
,
Albohr
,
O.
,
Creton
,
C.
, and
Peveri
,
V.
,
2004
, “
Contact Area between a Viscoelastic Solid and a Hard, Randomly Rough, Substrate
,”
J. Chem. Phys.
,
120
(
18
), pp.
8779
8793
.
6.
Persson
,
B. N. J.
, and
Yang
,
C.
,
2008
, “
Theory of the Leak-Rate of Seals
,”
J. Phys. Condens. Matter
,
20
(
31
), p.
315011
.
7.
Bottiglione
,
F.
,
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
,
2009
, “
Leakage Mechanism in Flat Seals
,”
J. Appl. Phys.
,
106
(
10
), p.
104902
.
8.
Bottiglione
,
F.
,
Carbone
,
G.
, and
Mantriota
,
G.
,
2009
, “
Fluid Leakage in Seals: An Approach Based on Percolation Theory
,”
Tribol. Int.
,
42
(
5
), pp.
731
737
.
9.
Lorenz
,
B.
, and
Persson
,
B. N. J.
,
2010
, “
Leak Rate of Seals: Effective-Medium Theory and Comparison with Experiment
,”
Eur. Phys. J. E
,
31
(
2
), pp.
159
167
.
10.
Pérez-Ràfols
,
F.
,
Larsson
,
R.
, and
Almqvist
,
A.
,
2016
, “
Modelling of Leakage on Metal-to-Metal Seals
,”
Tribol. Int.
,
94
, pp.
421
427
.
11.
Ledoux
,
Y.
,
Lasseux
,
D.
,
Favreliere
,
H.
,
Samper
,
S.
, and
Grandjean
,
J.
,
2011
, “
On the Dependence of Static Flat Seal Efficiency to Surface Defects
,”
Int. J. Press. Vessels Piping
,
88
(
11–12
), pp.
518
529
.
12.
Marie
,
C.
, and
Lasseux
,
D.
,
2007
, “
Experimental Leak-Rate Measurement Through a Static Metal Seal
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
799
805
.
13.
Lorenz
,
B.
, and
Persson
,
B. N. J.
,
2009
, “
Leak Rate of Seals: Comparison of Theory With Experiment
,”
Europhys. Lett.
,
86
(
4
), p.
44006
.
14.
Lorenz
,
B.
, and
Persson
,
B. N. J.
,
2010
, “
On the Dependence of the Leak Rate of Seals on the Skewness of the Surface Height Probability Distribution
,”
Europhys. Lett.
,
90
(
3
), p.
38002
.
15.
Vlădescu
,
S.-C.
,
Putignano
,
C.
,
Marx
,
N.
,
Keppens
,
T.
,
Reddyhoff
,
T.
, and
Dini
,
D.
,
2018
, “
The Percolation of Liquid Through a Compliant Seal—An Experimental and Theoretical Study
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031101
.
16.
Malburg
,
M. C.
,
2003
, “
Surface Profile Analysis for Conformable Interfaces
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
624
627
.
17.
Liao
,
Y.
,
Stephenson
,
D. A.
, and
Ni
,
J.
,
2012
, “
Multiple-Scale Wavelet Decomposition, 3D Surface Feature Exaction and Applications
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011005
.
18.
Jianjun
,
S.
,
Chenbo
,
M.
,
Jianhua
,
L.
, and
Qiuping
,
Y.
,
2018
, “
A Leakage Channel Model for Sealing Interface of Mechanical Face Seals Based on Percolation Theory
,”
Tribol. Int.
,
118
, pp.
108
119
.
19.
Zhang
,
F.
,
Liu
,
J.
,
Ding
,
X.
, and
Yang
,
Z.
,
2017
, “
An Approach to Calculate Leak Channels and Leak Rates Between Metallic Sealing Surfaces
,”
ASME J. Tribol.
,
139
(
1
), p.
011708
.
20.
Ren
,
J.
,
Park
,
C.
, and
Wang
,
H.
,
2018
, “
Stochastic Modeling and Diagnosis of Leak Areas for Surface Assembly
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041011
.
21.
Shao
,
Y.
,
Yin
,
Y.
,
Du
,
S.
,
Xia
,
T.
, and
Xi
,
L.
,
2018
, “
Leakage Monitoring in Static Sealing Interface Based on Three Dimensional Surface Topography Indicator
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101003
.
22.
Liu
,
X.
,
Liu
,
K.
,
Wang
,
W.
, and
Gui
,
C.
,
2009
, “
Connectivity Characterization of Three-Dimensional Surface Topography Based on Mathematical Morphology
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
223
(
J7
), pp.
941
947
.
23.
Huang
,
Z.
,
Shih
,
A. J.
, and
Ni
,
J.
,
2006
, “
Laser Interferometry Hologram Registration for Three-Dimensional Precision Measurements
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
1006
1013
.
24.
Du
,
S.
, and
Fei
,
L.
,
2015
, “
Co-Kriging Method for Form Error Estimation Incorporating Condition Variable Measurements
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041003
.
25.
Du
,
S.
,
Huang
,
D.
, and
Wang
,
H.
,
2015
, “
An Adaptive Support Vector Machine-Based Workpiece Surface Classification System Using High-Definition Metrology
,”
IEEE Trans. Instrum. Meas.
,
64
(
10
), pp.
2590
2604
.
26.
Huang
,
D.
,
Du
,
S.
,
Li
,
G.
, and
Wu
,
Z.
,
2017
, “
A Systematic Approach for Online Minimizing Volume Difference of Multiple Chambers in Machining Processes Based on High-Definition Metrology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081003
.
27.
Shao
,
Y.
,
Du
,
S.
, and
Xi
,
L.
,
2017
, “
3D Machined Surface Topography Forecasting With Space-Time Multioutput Support Vector Regression Using High Definition Metrology
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 1: 37th Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, p.
V001T002A069
.
28.
Shao
,
Y.
,
Wang
,
K.
,
Du
,
S.
, and
Xi
,
L.
,
2018
, “
High Definition Metrology Enabled Three Dimensional Discontinuous Surface Filtering by Extended Tetrolet Transform
,”
J. Manuf. Syst.
,
49
, pp.
75
92
.
29.
Wang
,
M.
,
Shao
,
Y.
,
Du
,
S.
, and
Xi
,
L.
,
2015
, “
A Diffusion Filter for Discontinuous Surface Measured by High Definition Metrology
,”
Int. J. Precision Eng. Manuf.
,
16
(
10
), pp.
2057
2062
.
30.
Wang
,
M.
,
Xi
,
L.
, and
Du
,
S.
,
2014
, “
3D Surface Form Error Evaluation Using High Definition Metrology
,”
Precision Eng.
,
38
(
1
), pp.
230
236
.
31.
Tzafestas
,
C. S.
, and
Maragos
,
P.
,
2002
, “
Shape Connectivity: Multiscale Analysis and Application to Generalized Granulometries
,”
J. Math. Imaging Vis.
,
17
(
2
), pp.
109
129
.
32.
Serra
,
J.
,
2000
, “
Connections for Sets and Functions
,”
Fundam. Inform.
,
41
(
1
), pp.
147
186
.
33.
ISO
,
2015
, “
Geometrical Product Specifications (GPS)-Filtration Part 1: Overview and Basic Concepts
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 16610-1:2015.
34.
ISO
,
2015
, “
Geometrical Product Specifications (GPS)-Filtration Part 22: Linear Profile Filters: Spline Filter
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 16610-22:2015.
35.
ISO
,
2015
, “
Geometrical Product Specifications (GPS)-Filtration Part 40: Morphological Profile Filters: Basic Concepts
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 16610-40:2015.
36.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
37.
Lou
,
S.
,
Jiang
,
X. Q.
,
Bills
,
P. J.
, and
Scott
,
P. J.
,
2013
, “
Defining True Tribological Contact Through Application of the Morphological Method to Surface Topography
,”
Tribol. Lett.
,
50
(
2
), pp.
185
193
.
You do not currently have access to this content.