Abstract

This paper presents the first simulation model of a tilting pad journal bearing (TPJB) using three-dimensional (3D) computational fluid dynamics (CFD), including multiphase flow, thermal-fluid, transitional turbulence, and thermal deformation of the shaft and pads employing two-way fluid–structure interaction (FSI). Part I presents a modeling method for the static performance. The model includes flow between pads BP, which eliminates the use of an uncertain, mixing coefficient (MC) in Reynold's equation approaches. The CFD model is benchmarked with Reynold's model with a 3D thermal-film, when the CFD model boundary conditions are consistent with the Reynolds boundary conditions. The Reynolds model employs an oversimplified MC representation of the three-dimensional mixing effect of the BP flow and heat transfer, and it also employs simplifying assumptions for the flow and heat transfer within the thin film between the journal and bearing. This manufactured comparison shows good agreement between the CFD and Reynold's equation models. The CFD model is generalized by removing these fictitious boundary conditions on pad inlets and outlets and instead models the flow and temperature between pads. The results show that Reynold's model MC approach can lead to significant differences with the CFD model including detailed flow and thermal modeling between pads. Thus, the CFD approach provides increased reliability of predictions. The paper provides an instructive methodology including detailed steps for properly applying CFD to tilt pad bearing modeling. Parts I and II focus on predicting static and dynamic response characteristic responses, respectively.

References

1.
Tieu
,
A.
,
1973
, “
Oil-Film Temperature Distribution in an Infinitely Wide Slider Bearing: An Application of the Finite-Element Method
,”
J. Mech. Eng. Sci.
,
15
(
4
), pp.
311
320
.
2.
Ettles
,
C. M. M.
,
1980
, “
The Analysis and Performance of Pivoted Pad Journal Bearings Considering Thermal and Elastic Effects
,”
ASME J. Lubr. Tech.
,
102
(
2
), pp.
182
191
.
3.
Knight
,
J. D.
, and
Barrett
,
L. E.
,
1987
, “
Analysis of Tilting-Pad Journal Bearing With Heat Transfer Effects
,”
ASME J. Tribol.
,
110
(
1
), pp.
128
133
.
4.
Brugier
,
D.
, and
Pascal
,
M. T.
,
1989
, “
Influence of Elastic Deformations of Turbo-Generator Tilting Pad Bearings on the Static Behavior and on the Dynamic Coefficients in Different Designs
,”
ASME J. Tribol.
,
111
(
2
), pp.
364
371
.
5.
Taniguchi
,
S.
,
Makino
,
T.
,
Takeshita
,
K.
, and
Ichimura
,
T.
,
1990
, “
A Thermohydrodynamic Analysis of Large Tilting-Pad Journal Bearing in Laminar and Turbulent Flow Regimes With Mixing
,”
ASME J. Tribol.
,
112
(
3
), pp.
542
550
.
6.
Kim
,
J.
,
Palazzolo
,
A. B.
, and
Gadangi
,
R. K.
,
1994
, “
TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method
,”
Tribo. Trans.
,
37
(
4
), pp.
771
783
.
7.
Haugaard
,
A. M.
, and
Santos
,
I. F.
,
2010
, “
Multi-Orifice Active Tilting-Pad Journal Bearings-Harnessing of Synergetic Coupling Effects
,”
Tribol. Int.
,
43
(
8
), pp.
1374
1391
.
8.
Suh
,
J.
, and
Palazzolo
,
A. B.
,
2015
, “
Three-Dimensional Dynamic Model of TEHD Tilting-Pad Journal Bearing-Part I: Theoretical Modeling
,”
ASME J. Tribol.
,
137
(
4
), p.
041704
.
9.
Tong
,
X.
,
Palazzolo
,
A. B.
, and
Suh
,
J.
,
2016
, “
Rotodynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
, p.
031705
.
10.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2016
, “
Effect of the Load Direction on Non-Nominal Five-Pad Tilting-Pad Journal Bearings
,”
Tribol. Int.
,
98
, pp.
197
211
.
11.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2016
, “
Numerical Investigation of the Effect of Manufacturing Errors in Pads on the Behavior of Tilting-Pad Journal Bearings
,”
Proc. IME J. J. Eng. Tribol.
,
232
(
4
), pp.
480
500
.
12.
Ettles
,
C.
,
1967
, “
Solutions for Flow in a Bearing Groove
,”
Proc. Instn. Mech. Eng.
,
182
(
14
), pp.
120
131
.
13.
Ettles
,
C.
,
1969
, “
Hot Oil Carry-Over in Thrust Bearings
,”
Proc. Instn. Mech. Eng.
,
184
(
12
), pp.
75
81
.
14.
Mitsui
,
J.
,
Hori
,
H.
, and
Tanaka
,
M.
,
1983
, “
Thermohydrodynamic Analysis of Cooling Effect of Supply Oil in Circular Journal Bearing
,”
ASME J. Lubr. Tech.
,
105
(
3
), pp.
414
420
.
15.
Heshmat
,
H.
, and
Pinkus
,
O.
,
1986
, “
Mixing Inlet Temperature in Hydrodynamic Bearing
,”
ASME J. Tribol.
,
108
(
2
), pp.
231
248
.
16.
Boncompain
,
R.
,
Fillon
,
M.
, and
Frene
,
J.
,
1986
, “
Analysis of Thermal Effects in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
219
224
.
17.
Lin
,
Q.
,
Wei
,
Z.
,
Wang
,
N.
, and
Chen
,
W.
,
2013
, “
Analysis on the Lubrication Performances of Journal Bearing System Using Computational Fluid Dynamics and Fluid-Structure Interaction Considering Thermal Influence and Cavitation
,”
Tribol. Int.
,
64
, pp.
8
15
.
18.
Chen
,
P. Y. P.
, and
Hahn
,
E. J.
,
1998
, “
Use of Computational Fluid Dynamics in Hydrodynamic Lubrication
,”
Proc. IME J. J. Eng. Tribol.
,
212
(
6
), pp.
427
436
.
19.
Guo
,
Z.
,
Toshio
,
H.
, and
Gorden
,
R.
,
2005
, “
Application of CFD Analysis for Rotating Machinery: Part 1—Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
4
, pp.
445
451
.
20.
Shenoy
,
B. S.
,
Pai
,
R. S.
,
Rao
,
D. S.
, and
Pai
,
R.
,
2009
, “
Elasto-Hydrodynamic Lubrication Analysis of Full 360° Journal Bearing Using CFD and FSI Techniques
,”
World J. Model Simulat.
,
5
(
4
), pp.
315
320
.
21.
Liu
,
H.
,
Xu
,
H.
,
Ellison
,
P. J.
, and
Jin
,
Z.
,
2010
, “
Application of Computational Fluid Dynamics and Fluid-Structure Interaction Method to the Lubrication Study of a Rotor-Bearing System
,”
Tribol. Lett.
,
38
, pp.
324
336
.
22.
Edney
,
L. E.
,
Heitland
,
G. B.
, and
Decalmillo
,
S. M.
(
1998
). “
Testing, Analysis, and CFD Modeling of a Profiled Leading Edge Groove Tilting Pad Journal Bearing
,”
1998 ASME TURBO EXPO Conference
,
Stockholm, Sweden
,
June 2–5
, ASME Paper No. 98-GT-409.
23.
Armentrout
,
R. W.
,
He
,
M.
,
Haykin
,
T.
, and
Reed
,
A. E.
,
2017
, “
Analysis of Turbulence and Convective Inertia in a Water-Lubricated Tilting-Pad Journal Bearing Using Conventional and CFD Approaches
,”
Tribol. Trans.
,
60
(
6
), pp.
1129
1147
.
24.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
F. R.
(
2015
). “
A One-Equation Local Correlation-Based Transition Model
,”
Flow, Turbul. Combust.
,
95
(
4
), pp.
583
619
.
25.
Gadangi
,
R.
, and
Palazzolo
,
A.
,
1995
, “
Transient Analysis of Tilt Pad Journal Bearings Including Effects of Pad Flexibility and Fluid Film Temperature
,”
ASME J. Tribol.
,
117
(
3
), pp.
123
135
.
26.
Kirk
,
R.
, and
Reedy
,
S.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
2
), pp.
165
171
.
27.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roak’s Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
28.
Nicholas
,
J. C.
, and
Wygant
,
K.
(
1995
). “
Tilting Pad Journal Bearing Pivot Design for High Load Applications
,”
Proceedings of the 24th Turbomachinery Symposium
,
Texas A&M University
,
College Station, TX
, pp.
33
47
.
You do not currently have access to this content.