In this study, a physics-based fatigue wear model is proposed to evaluate the reliability and to predict the life of cumulative micropitting wear for lubricated conformal contacts on rough surfaces. The surface normal load, mean film thickness, and frictional shear traction are simulated by a mixed elastohydrodynamic lubrication (EHL) model for a stress prediction model to calculate the average maximum Hertzian pressure of contact asperities and unit with the statistical contact model and dynamic contact model to obtain the asperity stress cycle number. The wear formula is established through combining a micropitting life prediction model of surface asperities and a mean micropitting damage constant of asperities. The four dominant aspects affecting wear behaviors of the surface contact pairs, working conditions, structure and surface topographies, material properties and lubrication conditions are all taken into account in the model. It is a high-fidelity and comprehensive model that can be used to analyze and optimize the tribological design of rolling–sliding pairs in machinery. The micropitting fatigue wear modeling scheme is validated by comparison of theoretical calculations and available experimental wear data.

References

References
1.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Physics-Based Model to Predict Micro-Pitting Lives of Lubricated Point Contacts
,”
Int. J. Fatigue
,
47
, pp.
205
215
.
2.
Pu
,
W.
,
Zhu
,
D.
,
Wang
,
J.
, and
Wang
,
Q. J.
,
2016
, “
Rolling–Sliding Contact Fatigue of Surfaces with Sinusoidal Roughness
,”
Int. J. Fatigue
,
90
, pp.
57
68
.
3.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
.
4.
Beheshti
,
A.
, and
Khonsari
,
M. M.
,
2011
, “
On the Prediction of Fatigue Crack Initiation in Rolling/Sliding Contacts with Provision for Loading Sequence Effect
,”
Tribol. Int.
,
44
(
12
), pp.
1620
1628
.
5.
Epstein
,
D.
,
Yu
,
T.
,
Wang
,
Q. J.
,
Keer
,
L. M.
,
Cheng
,
H. S.
,
Liu
,
S.
,
Harris
,
S. J.
, and
Gangopadhyay
,
A.
,
2003
, “
An Efficient Method of Analyzing the Effect of Roughness on Fatigue Life in Mixed-EHL Contact
,”
Tribol. Trans.
,
46
(
2
), pp.
273
281
.
6.
Ludema
,
K. C.
,
1996
, “
Mechanism-Based Modeling of Friction and Wear
,”
Wear
,
200
(
1–2
), pp.
1
7
.
7.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181
(
95
), pp.
443
457
.
8.
Hegadekatte
,
V.
,
Huber
,
N.
, and
Kraft
,
O.
,
2005
, “
Finite Element Based Simulation of Dry Sliding Wear
,”
Model. Simul. Mater. Sci.
,
13
(
1
), pp.
57
75
.
9.
Bayer
,
R. G.
,
1994
,
Mechanical Wear Prediction and Prevention
,
Marcel Dekker
,
New York
.
10.
Kim
,
N. H.
,
Won
,
D.
,
Burris
,
D.
,
Holtkamp
,
B.
,
Gessel
,
G. R.
,
Swanson
,
P.
, and
Sawyer
,
W. G.
,
2005
, “
Finite Element Analysis and Experiments of Metal/Metal Wear in Oscillatory Contacts
,”
Wear
,
258
(
11–12
), pp.
1787
1793
.
11.
Palanisamy
,
P.
,
Rajendran
,
I.
, and
Shanmugasundaram
,
S.
,
2008
, “
Prediction of Tool Wear using Regression and Ann Models in End-Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
37
(
1–2
), pp.
29
41
.
12.
Hsu
,
S. M.
,
Shen
,
M. C.
, and
Ruff
,
A. W.
,
1997
, “
Wear Prediction for Metals
,”
Tribol. Int.
,
30
(
5
), pp.
377
383
.
13.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
1st ed
.,
Cambridge University Press
,
Cambridge
.
14.
Holmes
,
M. J. A.
,
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2005
, “
Surface Contact and Damage in Micro-EHL
,”
Tribol. Interface Eng.
,
48
(
48
), pp.
605
616
.
15.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
,
121
(
3
), pp.
481
491
.
16.
Shi
,
F.
, and
Wang
,
Q. J.
,
1998
, “
A Mixed-Tehd Model for Journal-Bearing Conformal Contacts—Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact
,”
ASME J. Tribol.
,
120
(
2
), pp.
198
205
.
17.
Zhu
,
D.
,
Liu
,
Y.
, and
Wang
,
Q.
,
2014
, “
On the Numerical Accuracy of Rough Surface EHL Solution
,”
Tribol. Trans.
,
57
(
4
), pp.
570
580
.
18.
Wang
,
Q. J.
,
Zhu
,
D.
,
Herbert
,
S. C.
,
Yu
,
T.
,
Jiang
,
X.
, and
Liu
,
S.
,
2004
, “
Mixed Lubrication Analyses by a Macro-Micro Approach and a Full-Scale Mixed EHL Model
,”
ASME J. Tribol.
,
126
(
1
), pp.
81
91
.
19.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
The Behavior of Thrust Washer Bearings Considering Mixed Lubrication and Asperity Contact
,”
Tribol. Trans.
,
49
(
2
), pp.
233
247
.
20.
Al-Mayali
,
M. F.
,
Hutt
,
S.
,
Sharif
,
K. J.
,
Clarke
,
A.
, and
Evans
,
H. P.
,
2018
, “
Experimental and Numerical Study of Micropitting Initiation in Real Rough Surfaces in a Micro-Elastohydrodynamic Lubrication Regime
,”
Tribol. Lett.
,
66
(
4
), p.
150
.
21.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
22.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
23.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
24.
Shankar
,
S.
, and
Mayuram
,
M. M.
,
2008
, “
A Finite Element Based Study on the Elastic-Plastic Transition Behavior in a Hemisphere in Contact With a Rigid Flat
,”
ASME J. Tribol.
,
130
(
4
), p.
044502
.
25.
Li
,
L.
,
Song
,
W.
,
Zhang
,
C.
,
Ovcharenko
,
A.
,
Zhang
,
G.
, and
Talke
,
F. E.
,
2012
, “
Investigation of Thermo-Mechanical Contact Between Slider and Bit Patterned Media
,”
Microsyst. Technol.
,
18
(
9–10
), pp.
1567
1574
.
26.
Jackson
,
R. L.
,
2010
, “
An Analytical Solution to an Archard-Type Fractal Rough Surface Contact Model
,”
Tribol. Trans.
,
53
(
4
), pp.
543
553
.
27.
Jackson
,
R. L.
,
Duvvuru
,
R. S.
,
Meghani
,
H.
, and
Mahajan
,
M.
,
2007
, “
An Analysis of Elasto-Plastic Sliding Spherical Asperity Interaction
,”
Wear
,
262
(
1
), pp.
210
219
.
28.
Mulvihill
,
D. M.
,
Kartal
,
M. E.
,
Nowell
,
D.
, and
Hills
,
D. A.
,
2011
, “
An Elastic–Plastic Asperity Interaction Model for Sliding Friction
,”
Tribol. Int.
,
44
(
12
), pp.
1679
1694
.
29.
Boucly
,
V.
,
Nélias
,
D.
, and
Green
,
I.
,
2007
, “
Modeling of the Rolling and Sliding Contact Between Two Asperities
,”
ASME J. Tribol.
,
129
(
2
), pp.
235
245
.
30.
Li
,
L.
,
Song
,
W.
,
Xu
,
M.
,
Ovcharenko
,
A.
, and
Zhang
,
G.
,
2015
, “
Atomistic Insights into the Loading – Unloading of an Adhesive Contact: A Rigid Sphere Indenting a Copper Substrate
,”
Comput. Mater. Sci.
,
98
, pp.
105
111
.
31.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
(
1
), pp.
12
17
.
32.
Sackfield
,
A.
, and
Hills
,
D.
,
1983
, “
A Note on the Hertz Contact Problem: A Correlation of Standard Formulae
,”
J. Strain Anal. Eng.
,
18
(
3
), pp.
195
197
.
33.
Yamamoto
,
T.
,
1980
, “
Crack Growth in Lubricated Roller
,”
Solid Contact and Lubrication
, Vol.
39
,
ASME/AMD
,
New York
, pp.
223
236
.
34.
Wang
,
Q. J.
,
Shi
,
F.
, and
Lee
,
S. C.
,
1998
, “
A Mixed-TEHD Model for Journal-Bearing Conformal Contact—Part II: Contact, Film Thickness, and Performance Analyses
,”
ASME J. Tribol.
,
120
(
2
), pp.
206
213
.
35.
Peklenik
,
J.
,
1967
, “
New Developments in Surface Characterization and Measurements by Means of Random Process Analysis
,”
Proc. Inst. Mech. Eng.
,
182
(
3
), pp.
108
126
.
36.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
P. I. Mech. Eng.
,
185
(
1
), pp.
625
634
.
37.
Tan
,
Y.
,
Zhang
,
L.
, and
Hu
,
Y.
,
2015
, “
A Wear Model of Plane Sliding Pairs Based on Fatigue Contact Analysis of Asperities
,”
Tribol. Trans.
,
58
(
1
), pp.
148
157
.
38.
Cohen
,
D.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2008
, “
A Model for Contact and Static Friction of Nominally Flat Rough Surfaces Under Full Stick Contact Condition
,”
ASME J. Tribol.
,
130
(
3
), p.
031401
.
39.
Adams
,
G. G.
,
Müftü
,
S.
, and
Azhar
,
N. M.
,
2003
, “
A Scale-Dependent Model for Multi-Asperity Contact and Friction
,”
ASME J. Tribol.
,
125
(
4
), pp.
700
708
.
40.
Li
,
L.
,
Etsion
,
I.
, and
Talke
,
F. E.
,
2010
, “
Contact Area and Static Friction of Rough Surfaces With High Plasticity Index
,”
ASME J. Tribol.
,
132
(
3
), p.
031401
.
41.
Dickey
,
R. D. I.
,
Jackson
,
R. L.
, and
Flowers
,
G. T.
,
2011
, “
Measurements of the Static Friction Coefficient Between Tin Surfaces and Comparison to a Theoretical Model
,”
ASME J. Tribol.
,
133
(
3
), p.
031408
.
42.
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2017
, “
Elastic–Plastic Sinusoidal Waviness Contact Under Combined Normal and Tangential Loading
,”
Tribol. Lett.
,
65
(
2
), p.
45
.
43.
Wang
,
X.
,
Xu
,
Y.
, and
Jackson
,
R. L.
,
2018
, “
Theoretical and Finite Element Analysis of Static Friction Between Multi-Scale Rough Surfaces
,”
Tribol. Lett.
,
66
(
4
), p.
146
.
44.
Bower
,
A. F.
,
1988
, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
,
110
(
4
), pp.
704
711
.
45.
Keer
,
L. M.
, and
Bryant
,
M. D.
,
1983
, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME J. Tribol.
,
105
(
2
), pp.
198
205
.
46.
Tan
,
Y.
,
2015
, “
Study on Wear Modeling and Precision Retaining Ability of Slide Guide
,” Ph. D. thesis,
Tianjin University
,
Tianjin, China
.
You do not currently have access to this content.