Poor tribological properties restrict structural applications of aluminum alloys and surface composites of aluminum alloys have gained more attention in material processing. The addition of solid lubricant reinforcement particles along with abrasive ceramics contributes to the enhancement of tribological performance of surface composites. In the present study, the solid-state technique, friction stir processing (FSP) was used to develop mono (B4C) and hybrid (B4C + MoS2) surface composites in the AA6061-T651 aluminum alloy. The hybrid surface composites were produced by varying an amount of MoS2. Multipass FSP with different direction strategies was adopted for achieving uniform distribution of reinforcement powders in the aluminum matrix. Microstructure analysis showed a uniform dispersal of reinforcement particles without any clustering or agglomeration in the processing zone. Microhardness and wear performance of mono and hybrid composites improved in comparison with the base metal. The mono surface composite exhibited the highest hardness while the hybrid surface composite (75%B4C + 25%MoS2) achieved the highest wear resistance. This was attributed to the solid lubricant nature of MoS2. Furthermore, dissolution of the strengthening precipitate condition during multipass FSP without reinforcement particles resulted in the reduction of hardness and wear resistance.

References

References
1.
Miracle
,
D.
,
2005
, “
Metal Matrix Composites–From Science to Technological Significance
,”
Compos. Sci. Technol.
,
65
, pp.
2526
2540
.
2.
Shorowordi
,
K.
,
Laoui
,
T.
,
Haseeb
,
A. S. M. A.
,
Celis
,
J. P.
, and
Froyen
,
L.
,
2003
, “
Microstructure and Interface Characteristics of B4C, SiC and Al2O3 Reinforced Al Matrix Composites: A Comparative Study
,”
J. Mater. Process. Technol.
,
142
, pp.
738
743
.
3.
Pantelis
,
D.
,
Tissandier
,
A.
,
Manolatos
,
P.
, and
Ponthiaux
,
P.
,
1995
, “
Formation of Wear Resistant Al–SiC Surface Composite by Laser Melt–Particle Injection Process
,”
Mater. Sci. Technol.
,
11
, pp.
299
303
.
4.
Chao
,
M.
,
Cui
,
H. C.
,
Lu
,
F. G.
, and
Tang
,
X. H.
,
2013
, “
Evolution Behavior of TiB2 Particles During Laser Welding on Aluminum Metal Matrix Composites Reinforced With Particles
,”
Trans. Nonferrous Metals Soc. China
,
23
, pp.
1543
1548
.
5.
Vedabouriswaran
,
G.
, and
Aravindan
,
S.
,
2019
, “
Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites
,”
ASME J. Tribol.
,
141
(
4
),
p. 041601
.
6.
Pezeshkian
,
M.
,
Ebrahimzadeh
,
I.
, and
Gharavi
,
F.
,
2017
, “
Fabrication of Cu Surface Composite Reinforced by Ni Particles Via Friction Stir Processing: Microstructure and Tribology Behaviors
,”
ASME J. Tribol.
,
140
(
1
),
p. 011607
.
7.
Ma
,
Z. Y.
,
Feng
,
A. H.
,
Chen
,
D. L.
, and
Shen
,
J.
,
2018
, “
Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties
,”
Crit. Rev. Solid State Mater. Sci.
,
43
, pp.
269
333
.
8.
Padhy
,
G. K.
,
Wu
,
C. S.
, and
Gao
,
S.
,
2018
, “
Friction Stir Based Welding and Processing Technologies—Processes, Parameters, Microstructures and Applications: A Review
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
1
38
.
9.
Patel
,
V. V.
,
Badheka
,
V.
, and
Kumar
,
A.
2016
, “
Friction Stir Processing as a Novel Technique to Achieve Superplasticity in Aluminum Alloys: Process Variables, Variants, and Applications
,”
Metallogr. Microstruct. Anal.
,
5
(
4
), pp.
278
293
.
10.
Patel
,
V. V.
,
Badheka
,
V. J.
, and
Kumar
,
A.
,
2016
, “
Effect of Velocity Index on Grain Size of Friction Stir Processed Al-Zn-Mg-Cu Alloy
,”
Proc. Technol.
,
23
, pp.
537
542
.
11.
Patel
,
V. V.
,
Badheka
,
V. J.
,
Zala
,
S. R.
,
Patel
,
S. R.
,
Patel
,
U. D.
, and
Patel
,
S. N.
2016
, “
Effects of Various Cooling Techniques on Grain Refinement of Aluminum 7075-T651 During Friction Stir Processing
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
November 11–17
, V014T11A015. ASME Paper No. IMECE2016-66161.
12.
Patel
,
V. V.
,
Badheka
,
V. J.
,
Patel
,
U.
,
Patel
,
S.
,
Patel
,
S.
,
Zala
,
S.
, and
Badheka
,
K.
,
2017
, “
Experimental Investigation on Hybrid Friction Stir Processing Using Compressed Air in Aluminum 7075 Alloy
,”
Mater. Today: Proc.
,
4
, pp.
10025
10029
.
13.
Patel
,
V.
,
Badheka
,
V.
, and
Kumar
,
A.
,
2016
, “
Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn-Mg-Cu Alloy
,”
Mater. Manuf. Processes
,
31
, pp.
1573
1582
.
14.
Patel
,
V. V.
,
Badheka
,
V.
, and
Kumar
,
A.
,
2017
, “
Effect of Polygonal Pin Profiles on Friction Stir Processed Superplasticity of AA7075 Alloy
,”
J. Mater. Process. Technol.
,
240
, pp.
68
76
.
15.
Jesus
,
J. S.
,
Costa
,
J. M.
,
Loureiro
,
A.
, and
Ferreira
,
J. M.
,
2017
, “
Fatigue Strength Improvement of GMAW T-Welds in AA 5083 by Friction-Stir Processing
,”
Int. J. Fatigue
,
97
, pp.
124
134
.
16.
Mishra
,
R. S.
,
Ma
,
Z.
, and
Charit
,
I.
,
2003
, “
Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite
,”
Mater. Sci. Eng. A
,
341
, pp.
307
310
.
17.
Ratna Sunil
,
B.
,
2016
, “
Different Strategies of Secondary Phase Incorporation Into Metallic Sheets by Friction Stir Processing in Developing Surface Composites
,”
Int. J. Mech. Mater. Eng.
11
(
1
), pp.
1
8
.
18.
Komarasamy
,
M.
,
Mishra
,
R. S.
,
Baumann
,
J. A.
,
Grant
,
G.
, and
Hovanski
,
Y.
2013
, “Processing, Microstructure and Mechanical Property Correlation in Al-B4C Surface Composite Produced Via Friction Stir Processing,”
Friction Stir Welding and Processing VII
,
R.
Mishra
,
M. W.
Mahoney
,
Y
,
Sato
,
Y.
Hovanski
, and
R.
Verma
, eds.,
Springer
,
Cham
, pp.
39
46
.
19.
Rathee
,
S.
,
Maheshwari
,
S.
, and
Siddiquee
,
A. N.
,
2018
, “
Issues and Strategies in Composite Fabrication Via Friction Stir Processing: A Review
,”
Mater. Manuf. Processes
,
33
(
3
), pp.
239
261
.
20.
Sharma
,
V.
,
Gupta
,
Y.
,
Kumar
,
B. M.
, and
Prakash
,
U.
,
2016
, “
Friction Stir Processing Strategies for Uniform Distribution of Reinforcement in a Surface Composite
,”
Mater. Manuf. Processes
,
31
(
10
), pp.
1384
1392
.
21.
Lorenzo-Martin
,
M. C.
, and
Ajayi
,
O. O.
,
2014
, “
Surface Layer Modification of 6061 Al Alloy by Friction Stir Processing and Second Phase Hard Particles for Improved Friction and Wear Performance
,”
ASME J. Tribol.
,
136
(
4
), p.
044501
.
22.
Qu
,
J.
,
Xu
,
H.
,
Feng
,
Z.
,
Frederick
,
D. A.
,
An
,
L.
, and
Heinrich
,
H.
,
2011
, “
Improving the Tribological Characteristics of Aluminum 6061 Alloy by Surface Compositing With Sub-Micro-Size Ceramic Particles Via Friction Stir Processing
,”
Wear
,
271
, pp.
1940
1945
.
23.
Anvari
,
S.
,
Karimzadeh
,
F.
, and
Enayati
,
M.
,
2013
, “
A Novel Route for Development of Al–Cr–O Surface Nano-Composite by Friction Stir Processing
,”
J. Alloys Compd.
,
562
, pp.
48
55
.
24.
Sharma
,
V.
,
Prakash
,
U.
, and
Kumar
,
B. M.
,
2015
, “
Surface Composites by Friction Stir Processing: A Review
,”
J. Mater. Process. Technol.
,
224
, pp.
117
134
.
25.
Gangil
,
N.
,
Maheshwari
,
S.
, and
Siddiquee
,
A. N.
,
2018
, “
Multipass FSP on AA6063-T6 Al: Strategy to Fabricate Surface Composites
,”
Mater. Manuf. Processes
,
33
(
7
), pp.
805
811
.
26.
Rana
,
H.
and
Badheka
,
V.
2017
, “
Elucidation of the Role of Rotation Speed and Stirring Direction on AA 7075-B4C Surface Composites Formulated by Friction Stir Processing
,”
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
.
27.
Rana
,
H.
,
Badheka
,
V.
,
Kumar
,
A.
, and
Satyaprasad
,
A.
,
2018
, “
Strategical Parametric Investigation on Manufacturing of Al–Mg–Zn–Cu Alloy Surface Composites Using FSP
,”
Mater. Manuf. Processes
,
33
(
5
), pp.
534
545
.
28.
Palanivel
,
R.
,
Dinaharan
,
I.
,
Laubscher
,
R.
, and
Davim
,
J. P.
,
2016
, “
Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing
,”
Mater. Des.
,
106
, pp.
195
204
.
29.
Alidokht
,
S.
,
Abdollah-Zadeh
,
A.
, and
Assadi
,
H.
,
2013
, “
Effect of Applied Load on the Dry Sliding Wear Behaviour and the Subsurface Deformation on Hybrid Metal Matrix Composite
,”
Wear
,
305
, pp.
291
298
.
30.
Alidokht
,
S.
,
Abdollah-Zadeh
,
A.
,
Soleymani
,
S.
, and
Assadi
,
H.
,
2011
, “
Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing
,”
Mater. Des.
,
32
, pp.
2727
2733
.
31.
Gao
,
C.
,
Bredell
,
L.
,
Kuhlmann-Wilsdorf
,
D.
, and
Makel
,
D. D.
,
1993
, “
Micromechanics of MoS2 Lubrication
,”
Wear
,
162
, pp.
480
491
.
32.
Singh
,
H.
,
Singh
,
P.
, and
Bhowmick
,
H.
,
2018
, “
Influence of MoS2, H3BO3, and MWCNT Additives on the Dry and Lubricated Sliding Tribology of AMMC–Steel Contacts
,”
ASME J. Tribol.
,
140
(
4
), p.
041801
.
33.
Gajrani
,
K. K.
,
Sankar
,
M. R.
, and
Dixit
,
U. S.
,
2017
, “
Tribological Performance of MoS2-Filled Microtextured Cutting Tools During Dry Sliding Test
,”
ASME J. Tribol.
,
140
(
2
), p.
021301
.
34.
Rejil
,
C. M.
,
Dinaharan
,
I.
,
Vijay
,
S.
, and
Murugan
,
N.
,
2012
, “
Microstructure and Sliding Wear Behavior of AA6360/(TiC+ B4C) Hybrid Surface Composite Layer Synthesized by Friction Stir Processing on Aluminum Substrate
,”
Mater. Sci. Eng.: A
,
552
, pp.
336
344
.
35.
Yuvaraj
,
N.
,
Aravindan
,
S.
, and
Vipin
,
2017
, “
Wear Characteristics of Al5083 Surface Hybrid Nano-Composites by Friction Stir Processing
,”
Trans. Indian Inst. Metals
,
70
(
4
), pp.
1111
1129
.
36.
Soleymani
,
S.
,
Abdollah-Zadeh
,
A.
, and
Alidokht
,
S. A.
,
2012
, “
Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing
,”
Wear
,
278–279
, pp.
41
47
.
37.
Aruri
,
D.
,
Adepu
,
K.
,
Adepu
,
K.
, and
Bazavada
,
K.
,
2013
, “
Wear and Mechanical Properties of 6061-T6 Aluminum Alloy Surface Hybrid Composites [(SiC+ Gr) and (SiC+ Al2O3)] Fabricated by Friction Stir Processing
,”
J. Mater. Res. Technol.
,
2
(
4
), pp.
362
369
.
38.
Sudhakar
,
I.
,
Madhu
,
V.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2015
, “
Enhancement of Wear and Ballistic Resistance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing
,”
Defence Technol.
,
11
(
1
), pp.
10
17
.
39.
Srinivasu
,
R.
,
Rao
,
A. S.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2015
, “
Friction Stir Surfacing of Cast A356 Aluminium–Silicon Alloy With Boron Carbide and Molybdenum Disulphide Powders
,”
Defence Technol.
,
11
(
2
), pp.
140
146
.
40.
Kumar
,
K.
, and
Kailas
,
S. V.
,
2008
, “
The Role of Friction Stir Welding Tool on Material Flow and Weld Formation
,”
Mater. Sci. Eng.: A
,
485
, pp.
367
374
.
41.
Adel Mehraban
,
F.
,
Karimzadeh
,
F.
, and
Abbasi
,
M. H.
,
2015
, “
Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties
,”
JOM
,
67
(
5
), pp.
998
1006
.
42.
Al-Fadhalah
,
K. J.
,
Almazrouee
,
A. I.
, and
Aloraier
,
A. S.
,
2014
, “
Microstructure and Mechanical Properties of Multi-Pass Friction Stir Processed Aluminum Alloy 6063
,”
Mater. Des.
,
53
, pp.
550
560
.
You do not currently have access to this content.