This study described the synthesis and the tribological properties of surface-modified Field’s alloy nanoparticles, which were prepared by a facile one-step nanoemulsion method and using ethyl carbamate as a surfactant, as additives in liquid poly-alfa-olefin (PAO) oil. The size and morphology of nanoparticles were investigated by transmission electron microscopy (TEM). The zeta potential, viscosity, and stability properties of the surface-modified nanoparticles suspended in PAO oil (called nanofluid) with different mass concentrations were measured by a viscometer and Zeta potential analyzer, respectively. The tribological properties of the nanofluid were tested by a ball to disk wear and friction machine. Compared with pure PAO oil, the results showed that the nanofluids had better lubricating behaviors. When the mass concentration of modified nanoparticles was 0.08 wt. %, both the friction coefficient and the wear scar diameter were the lowest.

References

References
1.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
2.
Lee
,
K.
,
Hwang
,
Y.
,
Cheong
,
S.
,
Choi
,
Y.
,
Kwon
,
L.
,
Lee
,
J.
, and
Kim
,
S. H.
,
2009
, “
Understanding the Role of Nanoparticles in Nano-Oil Lubrication
,”
Tribol. Lett.
,
35
(
2
), pp.
127
131
.
3.
Gulzar
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Varman
,
M.
,
Zulkifli
,
N. W. M.
,
Mufti
,
R. A.
, and
Zahid
,
R.
,
2016
, “
Tribological Performance of Nanoparticles as Lubricating Oil Additives
,”
J. Nanopart. Res.
,
18
(
8
),
223
.
4.
Raina
,
A.
, and
Anand
,
A.
,
2017
, “
Tribological Investigation of Diamond Nanoparticles for Steel/Steel Contacts in Boundary Lubrication Regime
,”
Appl. Nanosci.
,
7
(
7
), pp.
371
388
.
5.
Ponomarenko
,
A. G.
,
Boiko
,
M. V.
,
Kalmykova
,
A. G.
,
Boiko
,
T. G.
,
Shiryaeva
,
T. A.
, and
Burlov
,
A. S.
,
2016
, “
Tribochemical Processes in Engine Oil with Copper Nanoparticles and Azomethine Ligand
,”
J. Frict. Wear
,
37
(
5
), pp.
435
440
.
6.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
,
2000
, “
Tribological Behavior and Lubricating Mechanism of Cu Nanoparticles in Oil
,”
Tribol. Lett.
,
8
(
4
), pp.
213
218
.
7.
Meng
,
H. N.
,
Zhang
,
Z. Z.
,
Zhao
,
F. X.
,
Qiu
,
T.
,
Zhu
,
X.
, and
Lu
,
X. J.
,
2014
, “
Tribological Behaviours of Cu Nanoparticles Recovered from Electroplating Effluent as Lubricant Additive
,”
Tribol-Mater. Surf. Interfaces
,
9
(
1
), pp.
46
53
.
8.
Ma
,
S.
,
Zheng
,
S.
,
Cao
,
D.
, and
Guo
,
H.
,
2010
, “
Anti-Wear and Friction Performance of ZrO2 Nanoparticles as Lubricant Additive
,”
Particuology
,
8
(
5
), pp.
468
472
.
9.
Song
,
X.
,
Zheng
,
S.
,
Zhang
,
J.
,
Li
,
W.
,
Chen
,
Q.
, and
Cao
,
B.
,
2012
, “
Synthesis of Monodispersed ZnAl2O4 Nanoparticles and Their Tribology Properties as Lubricant Additives
,”
Mater. Res. Bull.
,
47
(
12
), pp.
4305
4310
.
10.
Jiao
,
D.
,
Zheng
,
S.
,
Wang
,
Y.
,
Guan
,
R.
, and
Cao
,
B.
,
2011
, “
The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives
,”
Appl. Surf. Sci.
,
257
(
13
), pp.
5720
5725
.
11.
Shi
,
Q.
,
Xu
,
J.
,
Dang
,
L. F.
,
Chen
,
J.
,
Tang
,
G. G.
,
Zuo
,
W. Y.
,
Zhu
,
H. J.
, and
Li
,
C. S.
,
2017
, “
Synthesis and Tribological Properties of TiSe2 Nanoparticles
,”
J. Nano. Res.
,
45
(
5
), pp.
199
207
.
12.
Aldana
,
P. U.
,
Vacher
,
B.
,
Le Mogne
,
T.
,
Belin
,
M.
,
Thiebaut
,
B.
, and
Dassenoy
,
F.
,
2014
, “
Action Mechanism of WS2 Nanoparticles With ZDDP Additive in Boundary Lubrication Regime
,”
Tribol. Lett.
,
56
(
2
), pp.
249
258
.
13.
Liu
,
R.
,
Wei
,
X.
,
Tao
,
D.
, and
Zhao
,
Y.
,
2010
, “
Study of Preparation and Tribological Properties of Rare Earth Nanoparticles in Lubricating Oil
,”
Tribol. Int.
,
43
(
5–6
), pp.
1082
1086
.
14.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2018
, “
Tribological and Vibration Studies on Newly Developed Nanocomposite Greases Under Boundary Lubrication Regime
,”
ASME J. Tribol.
,
140
(
3
),
032001
.
15.
Charde
,
S. J.
,
Sonawane
,
S. S.
,
Rathod
,
A. P.
,
Sonawane
,
S. H.
,
Shimpi
,
N. G.
,
Parate
,
V. R.
,
Charde
,
S. J.
,
Sonawane
,
S. S.
,
Rathod
,
A. P.
, and
Sonawane
,
S. H.
,
2017
, “
Copper-Doped Zinc Oxide Nanoparticles: Influence on Thermal, Thermo Mechanical, and Tribological Properties of Polycarbonate
,”
Polym. Compos.
,
10
, pp.
10
12
.
16.
Jiang
,
Z.
,
Zhang
,
Y.
,
Yang
,
G.
,
Ma
,
J.
,
Zhang
,
S.
,
Yu
,
L.
, and
Zhang
,
P.
,
2017
, “
Tribological Properties of Tungsten Disulfide Nanoparticles Surface-Capped by Oleylamine and Maleic Anhydride Dodecyl Ester as Additive in Diisooctylsebacate
,”
Ind. Eng. Chem. Res.
,
56
(
6
), pp.
1
4
.
17.
Binks
,
B. P.
, and
Whitby
,
C. P.
,
2005
, “
Nanoparticle Silica-Stabilised Oil-in-Water Emulsions: Improving Emulsion Stability
,”
Colloids Surf. Physicochem. Eng. Aspects
,
253
(
1–3
), pp.
105
115
.
18.
Han
,
Z. H.
,
Yang
,
B.
,
Qi
,
Y.
, and
Cumings
,
J.
,
2011
, “
Synthesis of Low-Melting-Point Metallic Nanoparticles with an Ultrasonic Nanoemulsion Method
,”
Ultrasonics
,
51
(
4
), pp.
485
488
.
19.
Dang
,
H. X.
, and
Zhao
,
Y. B.
,
2004
, “
Tribological Properties of Bi Nanoparticles as Additive in Liquid Paraffin
,”
Tribology
,
24
(
2
), pp.
185
187
.
20.
Gao
,
X. Y.
,
Zhao
,
Y. B.
, and
Xiao
,
G. F.
,
2009
, “
Synthesis and Characterization of Bi-Pb-Sn Alloy Nanocrystals and Their Tribological Performances
,”
J. Alloys Compd.
,
474
(
1–2
), pp.
73
75
.
21.
Flores-Castaneda
,
M.
,
Camps
,
E.
,
Camacho-Lopez
,
M.
,
Muhl
,
S.
,
Garcia
,
E.
, and
Figueroa
,
M.
,
2015
, “
Bismuth Nanoparticles Synthesized by Laser Ablation in Lubricant Oils for Tribological Tests
,”
J. Alloys Compd.
,
643
, pp.
S67
S70
.
22.
Xiao
,
G. F.
,
Ma
,
X. H.
,
Zhao
,
Y. B.
, and
Wu
,
Z. S.
,
2008
, “
Preparation and Tribological Properties of Flower-Like Indium Nanoparticles
,”
Acta Physico-Chimica Sin.
,
24
(
10
), pp.
1864
1868
.
23.
Liu
,
X. Y.
,
Shi
,
X. L.
,
Huang
,
Y. C.
,
Deng
,
X. B.
,
Lu
,
G. C.
,
Yan
,
Z.
, and
Xue
,
B.
,
2018
, “
Tribological Behavior and Self-Healing Functionality of M50 Material Covered with Surface Micropores Filled with Sn-Ag-Cu
,”
Tribol. Int.
,
128
, pp.
365
375
.
24.
Wang
,
C.
,
Zhang
,
X.
, and
Su
,
M.
,
2017
, “
Synthesis and Thermal Stability of Field’s Alloy Nanoparticles and Nanofluid
,”
Mater. Lett.
,
205
, pp.
1
6
.
25.
Zhao
,
Y.
,
Liu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
,
Zhang
,
Z.
, and
Dang
,
H.
,
2006
, “
Synthesis and Characterization of Pb–Bi Bimetal Nanoparticles by Solution Dispersion
,”
Mater. Chem. Phys.
,
99
(
1
), pp.
71
74
.
26.
Obrien
,
R. W.
,
Midmore
,
B. R.
,
Lamb
,
A.
, and
Hunter
,
R. J.
,
1990
, “
Electroacoustic Studies of Moderately Concentrated Colloidal Suspensions
,”
Faraday Diskuss. Chem. Soc.
,
90
, pp.
301
312
.
27.
Hanaor
,
D.
,
Michelazzi
,
M.
,
Leonelli
,
C.
, and
Sorrell
,
C. C.
,
2012
, “
The Effects of Carboxylic Acids on the Aqueous Dispersion and Electrophoretic Deposition of ZrO2
,”
J. Eur. Ceram. Soc.
,
32
(
1
), pp.
235
244
.
28.
Furer
,
V. L.
,
1998
, “
Hydrogen Bonding in Ethyl Carbamate Studied by IR Spectroscopy
,”
J. Mol. Struct.
,
449
(
1
), pp.
53
59
.
29.
Rohr
,
O.
,
2002
, “
Bismuth – The New Ecologically Green Metal for Modern Lubricating Engineering
,”
Ind. Lubr. Tribol.
,
54
(
4
), pp.
153
164
.
30.
Sui
,
T.
,
Song
,
B.
,
Feng
,
Z.
, and
Yang
,
Q.
,
2015
, “
Effect of Particle Size and Ligand on the Tribological Properties of Amino Functionalized Hairy Silica Nanoparticles as an Additive to Polyalphaolefin
,”
J. Nanomater.
,
2015
(
1
), pp.
1
9
.
31.
Luo
,
T.
,
Wei
,
X.
,
Huang
,
X.
,
Huang
,
L.
, and
Yang
,
F.
,
2014
, “
Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives
,”
Ceram. Int.
,
40
(
5
), pp.
7143
7149
.
You do not currently have access to this content.