The performances of aerostatic bearings have an important impact on machining accuracy in the ultraprecision machine tools. In this paper, numerical simulation is performed to calculate the static and dynamic performances of a double-pad annular inherently compensated aerostatic thrust bearing, while considering the effects of the upper bearing and lower bearing. The static results calculated by the computational fluid dynamics (CFD) method are compared with the finite difference method (FDM) for the specific model. By using polynomial fitting, the load-carrying capacity (LCC) of the bearing is calculated and the relationship between eccentricity ratio, design parameters, and static stiffness is analyzed. The active dynamic mesh method (ADMM) is applied to obtain the dynamic performance of the double-pad aerostatic thrust bearing based on the perturbation theory. Meanwhile, the effects of supply pressure, orifice diameter, squeeze number, and eccentricity ratio are comprehensively considered. Moreover, the step response of the double-pad thrust bearing is analyzed by using the passive dynamic mesh method (PDMM) based on dynamic equation. Related dynamic parameters including natural frequency are obtained through a system identification toolbox with Matlab, which can be used to avoid resonance. It is found that the dynamic calculation results computed by the ADMM and the PDMM are very close. The proposed method can be used to provide guidance for the design and optimization of the double-pad aerostatic thrust bearings.

References

References
1.
Zhang
,
S. J.
,
To
,
S.
, and
Wang
,
H. T.
,
2013
, “
A Theoretical and Experimental Investigation into Five-DOF Dynamic Characteristics of an Aerostatic Bearing Spindle in Ultra-Precision Diamond Turning
,”
Int. J, Mach. Tool Manuf.
,
71
, pp.
1
10
.
2.
An
,
C. H.
,
Zhang
,
Y.
,
Xu
,
Q.
,
Zhang
,
F. H.
,
Zhang
,
J. F.
,
Zhang
,
L. J.
, and
Wang
,
J. H.
,
2010
, “
Modeling of Dynamic Characteristic of the Aerostatic Bearing Spindle in an Ultra-Precision Fly Cutting Machine
,”
Int. J. Mach. Tool Manuf.
,
50
(
4
), pp.
374
385
.
3.
Kassab
,
S. Z.
,
Noureldeen
,
E. M.
, and
Shawky
,
M. A.
,
1997
, “
Effects of Operating Conditions and Supply Hole Diameter on the Performance of a Rectangular Aerostatic Bearing
,”
Tribol. Int.
,
30
(
7
), pp.
533
545
.
4.
Li
,
Y. T.
, and
Ding
,
H.
,
2012
, “
A Simplified Calculation Method on the Performance Analysis of Aerostatic Thrust Bearing With Multiple Pocketed Orifice-Type Restrictors
,”
Tribol. Int.
,
56
, pp.
66
71
.
5.
Lu
,
L. H.
,
Chen
,
W. Q.
,
Wu
,
B.
,
Gao
,
Q.
, and
Wu
,
Q. H.
,
2016
, “
Optimal Design of an Aerostatic Spindle Based on Fluid-Structure Interaction Method and Its Verification
,”
P. I. Mech. Eng. J.-J. Eng.
,
230
(
6
), pp.
690
696
.
6.
Nakamura
,
T.
, and
Yoshimoto
,
S.
,
1997
, “
Static Tilt Characteristics of Aerostatic Rectangular Double-Pad Thrust Bearings With Double Row Admissions
,”
Tribol. Int.
,
30
(
8
), pp.
605
611
.
7.
Jeng
,
Y. R.
, and
Chang
,
S. H.
,
2013
, “
Comparison Between the Effects of Single-Pad and Double-Pad Aerostatic Bearings With Pocketed Orifices on Bearing Stiffness
,”
Tribol. Int.
,
66
, pp.
12
18
.
8.
Nakamura
,
T.
, and
Yoshimoto
,
S.
,
1996
, “
Static Tilt Characteristics of Aerostatic Rectangular Double-Pad Thrust Bearings With Compound Restrictors
,”
Tribol. Int.
,
29
(
2
), pp.
145
152
.
9.
Yoshimoto
,
S.
,
Suganuma
,
N.
,
Yagi
,
K.
,
Toda
,
K.
, and
Yamamoto
,
M.
,
2007
, “
Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearing With a Single Air Supply Inlet
,”
ASME J. Tribol.
,
129
(
2
), pp.
384
390
.
10.
Talukder
,
H. M.
, and
Stowell
,
T. B.
,
2003
, “
Pneumatic Hammer in an Externally Pressurized Orifice Compensated Air Journal Bearing
,”
Tribol. Int.
,
36
(
8
), pp.
585
591
.
11.
Bhat
,
N.
,
Kumar
,
S.
,
Tan
,
W.
,
Narasimhan
,
R.
, and
Low
,
T. C.
,
2012
, “
Performance of Inherently Compensated Flat Pad Aerostatic Bearing Subject to Dynamic Perturbation Forces
,”
Precis. Eng.
,
36
(
3
), pp.
399
407
.
12.
Yu
,
P. L.
,
Chen
,
X. D.
,
Wang
,
X. L.
, and
Jiang
,
W.
,
2015
, “
Frequency-Dependent Nonlinear Dynamic Stiffness of Aerostatic Bearing Subjected to External Perturbations
,”
Int. J. Precis. Eng. Man.
,
16
(
8
), pp.
1771
1777
.
13.
Hassini
,
M. A.
,
Arghir
,
M.
, and
Frocot
,
M.
,
2012
, “
Comparison Between Numerical and Experimental Dynamic Coefficients of a Hybrid Aerostatic Bearing
,”
ASME J. Eng. Gas. Turb. Power
,
134
(
12
),
122506
.
14.
Zhang
,
G.
, and
Ehmann
,
K. F.
,
2015
, “
Dynamic Design Methodology of High Speed Micro-Spindles for Micro/Meso-Scale Machine Tools
,”
Int. J. Adv. Manuf. Tech.
,
76
, pp.
229
246
.
15.
Ye
,
Y. X.
,
Chen
,
X. D.
,
Hu
,
Y. T.
, and
Luo
,
X.
,
2010
, “
Effects of Recess Shapes on Pneumatic Hammering in Aerostatic Bearing
,”
P. I. Mech. Eng. J.-J. Eng.
,
224
(
3
), pp.
231
237
.
16.
Belforte
,
G.
,
Colombo
,
F.
,
Raparelli
,
T.
,
Trivella
,
A.
, and
Viktorov
,
V.
,
2010
, “
Perfo-Rmance of Externally Pressurized Grooved Thrust Bearing
,”
Tribol. Lett.
,
37
(
3
), pp.
553
562
.
17.
Charki
,
A.
,
Diop
,
K.
,
Champmartin
,
S.
, and
Ambari
,
A.
,
2013
, “
Numerical Simulation and Experimental Study of Thrust Air Bearing With Multiple Orifices
,”
Int. J. Mech. Sci.
,
72
, pp.
28
38
.
18.
Ma
,
W.
,
Cui
,
J. W.
,
Liu
,
Y. M.
, and
Tan
,
J. B.
,
2016
, “
Improving the Pneumatic Hammer Stability of Aerostatic Thrust Bearing With Recess Using Damping Orifices
,”
Tribol. Int.
,
103
, pp.
281
288
.
19.
Nishio
,
U.
,
Somaya
,
K.
, and
Yoshimoto
,
S.
,
2011
, “
Numerical Calculation and Experimental Verification of Static and Dynamic Characteristics of Aerostatic Thrust Bearing With Small Feedholes
,”
Tribol. Int.
,
44
(
12
), pp.
1790
1795
.
20.
Arghir
,
M.
,
Hassini
,
M. A.
,
Balducchi
,
F.
, and
Gauthier
,
R.
,
2015
, “
Synthesis of Experimental and Theoretical Analysis of Pneumatic Hammer Instability in an Aerostatic Bearing
,”
ASME J. Eng. Gas. Turb. Power
,
138
(
2
),
021602
.
21.
Akhondzadeh
,
M.
, and
Vahdati
,
M.
,
2014
, “
Study of Variable Depth Air Pockets on Air Spindle Vibrations in Ultra-Precision Machine Tools
,”
Int. J. Adv. Manuf. Tech.
,
73
, pp.
681
686
.
22.
Sternlicht
,
B.
, and
Maginniss
,
F. J.
,
1957
, “
Application of Digital Computers to Bearing Design
,”
Trans. ASME
,
79
, pp.
1483
1493
.
23.
Belforte
,
G.
,
Colombo
,
F.
,
Raparelli
,
T.
,
Trivella
,
A.
, and
Viktorov
,
V.
,
2011
, “
Comparison Between Grooved and Plane Aerostatic Thrust Bearing: Static Performance
,”
Meccanica
,
46
(
3
), pp.
547
555
.
24.
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2010
, “
Numerical Investigation of Static and Dynamic Characteristics of Aerostatic Thrust Bearing With Small Feed Holes
,”
Tribol. Int.
,
43
(
8
), pp.
1353
1359
.
25.
Chang
,
S. H.
,
Chan
,
C. W.
, and
Jeng
,
Y. R.
,
2015
, “
Discharge Coefficients in Aerostatic Bearing With Inherent Orifice-Type Restrictors
,”
ASME J. Tribol.
,
137
(
1
),
011705
.
26.
Chang
,
S. H.
,
Chan
,
C. W.
, and
Jeng
,
Y. R.
,
2015
, “
Numerical Analysis of Discharge Coefficients in Aerostatic Bearing With Orifice-Type Restrictors
,”
Tribol. Int.
,
90
, pp.
157
163
.
27.
Belforte
,
G.
,
Raparelli
,
T.
,
Viktorov
,
V.
, and
Trivella
,
A.
,
2007
, “
Discharge Coefficients of Orifice-Type Restrictor for Aerostatic Bearings
,”
Tribol. Int.
,
40
(
3
), pp.
512
521
.
28.
Belforte
,
G.
,
Raparelli
,
T.
,
Trivella
,
A.
,
Viktorov
,
V.
, and
Visconte
,
C.
,
2015
, “
CFD Analysis of a Simple Orifice - Type Feeding System for Aerostatic Bearing
,”
Tribol. Lett.
,
58
(
2
), pp.
1
8
.
29.
Li
,
W.
,
Zhou
,
Z. X.
,
Xiao
,
H.
, and
Zhang
,
B.
,
2015
, “
Design and Evaluation of a High-Speed and Precision Microspindle
,”
Int. J. Adv. Manuf. Tech.
,
78
, pp.
997
1004
.
30.
Eleshaky
,
M. E.
,
2009
, “
CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearing
,”
Tribol. Int.
,
42
(
7
), pp.
1108
1117
.
31.
Khan
,
Z.
, and
Joshi
,
J. B.
,
2015
, “
Comparison of k-ε , RSM and LES Models for the Prediction of Flow Pattern in Jet Loop Reactor
,”
Chem. Eng. Sci.
,
127
, pp.
323
333
.
32.
Li
,
Y. F.
,
Yin
,
Y. H.
,
Yang
,
H.
,
Liu
,
X. N.
,
Mo
,
J.
, and
Cui
,
H. L.
,
2017
, “
Modeling for Optimization of Circular Flat Pad Aerostatic Bearing With a Single Central Orifice-Type Restrictor Based on CFD Simulation
,”
Tribol. Int.
,
109
, pp.
206
216
.
33.
Lai
,
T. W.
,
Fu
,
B.
,
Chen
,
S. T.
,
Zhang
,
Q. Y.
, and
Hou
,
Y.
,
2017
, “
Numerical Analysis of the Static Performance of an Annular Aerostatic Gas Thrust Bearing Applied in the Cryogenic Turbo-Expander of the EAST Subsystem
,”
Plasma Sci. Technol.
,
19
(
2
), pp.
115
122
.
34.
Chen
,
X. D.
,
Zhu
,
J. C.
, and
Chen
,
H.
,
2013
, “
Dynamic Characteristics of Ultra-Precision Aerostatic Bearing
,”
Adv. Manuf.
,
1
(
1
), pp.
82
86
.
35.
Gao
,
Q.
,
Lu
,
L. H.
,
Chen
,
W. Q.
,
Chen
,
G. D.
, and
Wang
,
G. L.
,
2017
, “
A Novel Modeling Method to Investigate THE Performance of Aerostatic Spindle Considering the Fluid-Structure Interaction
,”
Tribol. Int.
,
115
, pp.
461
469
.
36.
Cui
,
H. L.
,
Wang
,
Y.
,
Yue
,
X. B.
,
Li
,
Y. F.
, and
Jiang
,
Z. Y.
,
2018
, “
Numerical Analysis of the Dynamic Performance of Aerostatic Thrust Bearing With Different Restrictors
,”
P. I. Mech. Eng. J.-J. Eng.
, pp.
1
18
.
37.
Meruane
,
V.
, and
Pascual
,
R.
,
2008
, “
Identification of Nonlinear Dynamic Coefficients in Plain Journal Bearing
,”
Tribol. Int.
,
41
(
8
), pp.
743
754
.
38.
Li
,
M. X.
,
Gu
,
C. H.
,
Pan
,
X. H.
,
Zheng
,
S. Y.
, and
Li
,
Q.
,
2016
, “
A New Dynamic Mesh Algorithm for Studying the 3D Transient Flow Field Of Tilting Pad Journal Bearing
,”
P. I. Mech. Eng. J.-J. Eng.
,
230
(
12
), pp.
1470
1482
.
39.
ANSYS FLUENT 16.2 User’s Guide
,
2015
.
40.
Eshghy
,
S.
,
1975
, “
Optimum Design of Multiple-Hole Inherently Compensated Air Bearings- Part 1: Circular Thrust Bearings
,”
ASME J. Lubr. Tech.
,
97
(
2
), pp.
221
227
.
This content is only available via PDF.
You do not currently have access to this content.