In this investigation, computational multibody system (MBS) algorithms are used to develop detailed railroad vehicle models for the prediction of the wear resulting from the pantograph/catenary dynamic interaction. The wear is predicted using MBS algorithms for different motion scenarios that include constant-speed curve negotiation and acceleration and deceleration on a tangent (straight) track. The effect of the vehicle vibration in these different motion scenarios on the contact force is further used to study the wear rates of the contact wire. The wear model used in this investigation accounts for the electrical and the mechanical effects. The nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF), which is suitable for implementation in MBS algorithms, is used to model the flexible catenary system, thereby eliminating the need for using incremental-rotation procedures and co-simulation techniques. In order to obtain efficient solutions, both the overhead contact line and the messenger wire are modeled using the gradient-deficient ANCF cable element. The pantograph/catenary elastic contact formulation employed in this study allows for separation between the pantograph panhead and the contact wire, and accounts for the effect of friction due to the sliding between the pantograph panhead and the catenary cable. The approach proposed in this investigation can be used to evaluate the electrical contact resistance, contribution of the arcing resulting from the panhead/catenary separation, mechanical and electrical wear contributions, and the effect of the pantograph mechanism uplift force on the wear rate. Numerical results are presented and analyzed to examine the wear rates for different motion scenarios.

References

References
1.
Lee
,
J. H.
, and
Park
,
T. W.
,
2012
, “
Development of a Three-Dimensional Catenary Model using Cable Elements Based on Absolute Nodal Coordinate Formulation
,”
J. Mech. Sci. Technol.
,
26
, pp.
3933
3941
.
2.
Seo
,
J. H.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2005
, “
Three-Dimensional Large Deformation Analysis of the Multibody Pantograph/Catenary Systems
,”
Nonlinear Dyn.
,
42
(
2
), pp.
199
215
.
3.
Seo
,
J. H.
,
Kim
,
S. W.
,
Jung
,
I. H.
,
Park
,
T. W.
,
Mok
,
J. Y.
,
Kim
,
Y. G.
, and
Chai
,
J. B.
,
2006
, “
Dynamic Analysis of a Pantograph–Catenary System Using Absolute Nodal Coordinates
,”
Vehicle Syst. Dyn.
,
44
(
8
), pp.
615
630
.
4.
Jung
,
S. P.
,
Kim
,
Y. G.
,
Paik
,
J. S.
, and
Park
,
T. W.
,
2012
, “
Estimation of Dynamic Contact Force Between a Pantograph and Catenary Using the Finite Element Method
,”
ASME J. Comput. Nonlinear Dyn.
,
7
,
041006
.
5.
Arnold
,
M.
, and
Simeon
,
B.
,
2000
, “
Pantograph and Catenary Dynamics: A Benchmark Problem and Its Numerical Solution
,”
Appl. Numer. Math.
,
34
(
4
), pp.
345
362
.
6.
Bruni
,
S.
,
Ambrosio
,
J.
,
Carnicero
,
A.
,
Cho
,
Y. H.
,
Finner
,
L.
,
Ikeda
,
M.
, and
Zhang
,
W.
,
2015
, “
The Results of the Pantograph–Catenary Interaction Benchmark
,”
Veh. Syst. Dyn.
,
53
(
3
), pp.
412
435
.
7.
Bucca
,
G.
, and
Collina
,
A.
,
2009
, “
A Procedure for the Wear Prediction of Collector Strip and Contact Wire in Pantograph–Catenary System
,”
Wear
,
266
(
1-2
), pp.
46
59
.
8.
Bucca
,
G.
, and
Collina
,
A.
,
2015
, “
Electromechanical Interaction Between Carbon-Based Pantograph Strip and Copper Contact Wire: A Heuristic Wear Model
,”
Tribol. Int.
,
92
, pp.
47
56
.
9.
Bucca
,
G.
,
Collina
,
A.
,
Manigrasso
,
R.
,
Mapelli
,
F.
, and
Tarsitano
,
D.
,
2011
, “
Analysis of Electrical Interferences Related to the Current Collection Quality in Pantograph–Catenary Interaction
,”
Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit
,
225
(
5
), pp.
483
500
.
10.
Massat
,
J. P.
,
Laine
,
J. P.
, and
Bobillot
,
A.
,
2006
, “
Pantograph–Catenary Dynamics Simulation
,”
Veh. Syst. Dyn.
,
44
(
1
), pp.
551
559
.
11.
Pappalardo
,
C. M.
,
Patel
,
M. D.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2015
, “
Contact Force Control in Multibody Pantograph/Catenary Systems
,”
Proc. Inst. Mech. Eng. Part K: J. Multibody Dyn.
,
230
(
4
), pp.
307
328
.
12.
Poetsch
,
G.
,
Evans
,
J.
,
Meisinger
,
R.
,
Kortüm
,
W.
,
Baldauf
,
W.
,
Veitl
,
A.
, and
Wallaschek
,
J.
,
1997
, “
Pantograph/Catenary Dynamics and Control
,”
Veh. Syst. Dyn.
,
28
(
2-3
), pp.
159
195
.
13.
Bocciolone
,
M.
,
Resta
,
F.
,
Rocchi
,
D.
,
Tosi
,
A.
, and
Collina
,
A.
,
2006
, “
Pantograph Aerodynamic Effects on the Pantograph–Catenary Interaction
,”
Veh. Syst. Dyn.
,
44
(
1
), pp.
560
570
.
14.
Carnevale
,
M.
,
Facchinetti
,
A.
,
Maggiori
,
L.
, and
Rocchi
,
D.
,
2015
, “
Computational Fluid Dynamics as a Means of Assessing the Influence of Aerodynamic Forces on the Mean Contact Force Acting on a Pantograph
,”
Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit
,
230
(
7
), pp.
1698
1713
.
15.
Cheli
,
F.
,
Ripamonti
,
F.
,
Rocchi
,
D.
, and
Tomasini
,
G.
,
2010
, “
Aerodynamic Behaviour Investigation of the New EMUV250 Train to Cross Wind
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
4
), pp.
189
201
.
16.
Kulkarni
,
S.
,
Pappalardo
,
C. M.
, and
Shabana
,
A. A.
,
2017
, “
Pantograph/Catenary Contact Formulations
,”
ASME J. Vib. Acoust.
,
139
(
1
), pp.
1
12
.
17.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Rauter
,
F.
,
Collina
,
A.
, and
Facchinetti
,
A.
,
2009
, “
Influence of the Aerodynamic Forces on the Pantograph–Catenary System for High-Speed Trains
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1327
1347
.
18.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2007
,
Railroad Vehicle Dynamics: A Computational Approach
,
CRC Press,
Boca Raton, FL
.
19.
Shabana
,
A. A.
, and
Sany
,
J. R.
,
2001
, “
A Survey of Rail Vehicle Track Simulations and Flexible Multibody Dynamics
,”
Nonlinear Dyn.
,
26
(
2
), pp.
179
212
.
20.
Zboiński
,
K.
,
1998
, “
Dynamical Investigation of Railway Vehicles on a Curved Track
,”
Eur. J. Mech. A/Solids
,
17
(
6
), pp.
1001
1020
.
21.
Zboinski
,
K.
, and
Dusza
,
M.
,
2006
, “
Development of the Method and Analysis for Non-Linear Lateral Stability of Railway Vehicles in a Curved Track
,”
Veh. Syst. Dyn.
,
44
(
supp.1
), pp.
147
157
.
22.
Zhou
,
L.
, and
Shen
,
Z. Y.
,
2013
, “
Dynamic Analysis of a High-Speed Train Operating on a Curved Track With Failed Fasteners
,”
J. Zhejiang Univ. Sci. A
,
14
(
6
), pp.
447
458
.
23.
Ding
,
T.
,
Chen
,
G. X.
,
Wang
,
X.
,
Zhu
,
M. H.
,
Zhang
,
W. H.
, and
Zhou
,
W. X.
,
2011
, “
Friction and Wear Behavior of Pure Carbon Strip Sliding Against Copper Contact Wire Under AC Passage at High Speeds
,”
Tribol. Int.
,
44
(
4
), pp.
437
444
.
24.
He
,
D. H.
,
Manory
,
R. R.
, and
Grady
,
N.
,
1998
, “
Wear of Railway Contact Wires Against Current Collector Materials
,”
Wear
,
215
(
1-2
), pp.
146
155
.
25.
Klapas
,
D.
,
Benson
,
F. A.
,
Hackam
,
R.
, and
Evison
,
P. R.
,
1988
, “
Wear in Simulated Railway Overhead Current Collection Systems
,”
Wear
,
126
(
2
), pp.
167
190
.
26.
Kubo
,
S.
, and
Kato
,
K.
,
1998
, “
Effect of Arc Discharge on Wear Rate of Cu-Impregnated Carbon Strip in Unlubricated Sliding Against Cu Trolley Under Electric Current
,”
Wear
,
216
(
2
), pp.
172
178
.
27.
Kubo
,
S.
, and
Kato
,
K.
,
1999
, “
Effect of Arc Discharge on the Wear Rate and Wear Mode Transition of a Copper-Impregnated Metallized Carbon Contact Strip Sliding Against a Copper Disk
,”
Tribol. Int.
,
32
(
7
), pp.
367
378
.
28.
Yokoyama
,
N.
,
2009
, “
Research and Development Toward Wear Reduction of Current Collecting System
,”
JR East Technical Review No.13
.
29.
Chen
,
G. X.
,
Yang
,
H. J.
,
Zhang
,
W. H.
,
Wang
,
X.
,
Zhang
,
S. D.
, and
Zhou
,
Z. R.
,
2013
, “
Experimental Study on Arc Ablation Occurring in a Contact Strip Rubbing Against a Contact Wire With Electrical Current
,”
Tribol. Int.
,
61
, pp.
88
94
.
30.
Kubota
,
Y.
,
Nagasaka
,
S.
,
Miyauchi
,
T.
,
Yamashita
,
C.
, and
Kakishima
,
H.
,
2013
, “
Sliding Wear Behavior of Copper Alloy Impregnated C/C Composites Under an Electrical Current
,”
Wear
,
302
(
1-2
), pp.
1492
1498
.
31.
Gere
,
J. M.
, and
Weaver
,
W.
1965
,
Analysis of Framed Structures
,
Van Nostrand
,
NY
.
32.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
,
4th ed.
,
Cambridge University Press
,
Cambridge
.
33.
Huan
,
R.H.
,
Pan
,
G.F.
, and
Zhu
,
W.Q.
2012
, “
Dynamics of Pantograph-Catenary System Considering Local Singularities of Contact Wire With Critical Wavelengths
”,
Proceedings of the 1st International Workshop on High-Speed and Intercity Railways
,
Springer
,
Berlin, Heidelberg
, pp.
319
333
.
34.
Tur
,
M.
,
García
,
E.
,
Baeza
,
L.
, and
Fuenmayor
,
F. J.
,
2014
, “
A 3D Absolute Nodal Coordinate Finite Element Model to Compute the Initial Configuration of a Railway Catenary
,”
Eng. Struct.
,
71
, pp.
234
243
.
35.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
,
45
(
1-2
), pp.
109
130
.
36.
Shabana
,
A. A.
,
2018
,
Computational Continuum Mechanics
,
3rd ed.
,
Wiley & Sons
,
Chichester, UK
.
37.
Aboubakr
,
A. K.
, and
Shabana
,
A. A.
,
2015
, “
Efficient and Robust Implementation of the TLISMNI Method
,”
J. Sound Vib.
,
353
, pp.
220
242
.
You do not currently have access to this content.