A deterministic adhesive model for the contact between an elastic layered medium with surface roughness and a smooth elastic microsphere was developed on the basis of the Lennard–Jones surface force law. Through numerical simulations, the adhesive contact behavior of the layered medium with the measured three-dimensional (3D) surface topography was comparatively analyzed with that of the homogeneous medium. Furthermore, the contact characteristics of the layered medium with pre-assigned roughness parameters were investigated with the aid of a computer-generated technique for simulating surface roughness. Results showed that the pull-off force for the contact problem involving rough surfaces was influenced by the contact location, and the average value for the contact between an alumina (SiO2) microsphere and a diamond-like carbon/silicon (DLC/Si)-layered medium was smaller than that for the contact between a SiO2 microsphere and a Si homogeneous half-space. In addition, the effect of the diamond-like carbon (DLC) layer on reducing adhesion was smaller than that of the surface roughness. Finally, the average pull-off force for a DLC/Si-layered medium with computer-generated surface roughness rapidly decreased; however, it eventually became almost unchangeable with the increase in the root-mean-square (RMS) deviation.

References

References
1.
Smallwood
,
S. A.
,
Eapen
,
K. C.
,
Patton
,
S. T.
, and
Zabinski
,
J. S.
,
2006
, “
Performance Results of MEMS Coated With a Conformal DLC
,”
Wear
,
260
(
11–12
), pp.
1179
1189
.
2.
Buja
,
F.
,
Fiorentino
,
G.
,
Kokorian
,
J.
, and
Spengen
,
W. M.
,
2015
, “
Observation of Nanoscale Adhesion, Friction and Wear Between ALD Al2O3 Coated Silicon MEMS Sidewalls
,”
Nanotechnol.
,
26
(
25
), p.
255701
.
3.
Laboriante
,
I.
,
Bush
,
B.
,
Lee
,
D.
,
Liu
,
F.
,
Kingliu
,
T. J.
,
Carraro
,
C.
, and
Maboudian
,
R.
,
2010
, “
Interfacial Adhesion Between Rough Surfaces of Polycrystalline Silicon and Its Implications for M/NEMS Technology
,”
J. Adhes. Sci. Technol.
,
24
(
15–16
), pp.
2545
2556
.
4.
Wang
,
L. F.
,
Rong
,
W. B.
,
Shao
,
B.
, and
Sun
,
L. N.
,
2012
, “
Adhesive Elastic Contact of Rough Surfaces With Power-Law Axisymmetric Asperities
,”
ASME J. Tribol.
,
134
(
3
), p.
032101
.
5.
Argatov
,
I. I.
,
Borodich
,
F. M.
, and
Popov
,
V. L.
,
2016
, “
JKR Adhesive Contact for a Transversely Isotropic Layer of Finite Thickness
,”
J. Phys. D Appl. Phys.
,
49
(
4
), p.
045307
.
6.
Eid
,
H.
,
Joshi
,
N.
,
McGruer
,
N. E.
, and
Adams
,
G. G.
,
2011
, “
A Model of Contact With Adhesion of a Layered Elastic-Plastic Microsphere With a Rigid Flat Surface
,”
ASME J. Tribol.
,
133
(
3
), p.
031406
.
7.
Song
,
Z. C.
, and
Komvopoulos
,
K.
,
2013
, “
Adhesive Contact of Elastic-Plastic Layered Media: Effective Tabor Parameter and Mode of Surface Separation
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021022
.
8.
Sergici
,
A. O.
,
Adams
,
G. G.
, and
Müftü
,
S.
,
2006
, “
Adhesion in the Contact of a Spherical Indenter With a Layered Elastic Half-Space
,”
J. Mech. Phys. Solids
,
54
(
9
), pp.
1843
1861
.
9.
Song
,
Z. C.
, and
Komvopoulos
,
K.
,
2013
, “
Adhesive Contact of an Elastic Semi-Infinite Solid With a Rigid Rough Surface: Strength of Adhesion and Contact Instabilities
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1197
1207
.
10.
Peng
,
Y.
, and
Guo
,
Y.
,
2007
, “
An Adhesion Model for Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
102
(
5
), p.
053510
.
11.
Medina
,
S.
, and
Dini
,
D.
,
2014
, “
A Numerical Model for the Deterministic Analysis of Adhesive Rough Contacts Down to the Nano-Scale
,”
Int. J. Solids Struct.
,
51
(
14
), pp.
2620
2632
.
12.
Bazrafshan
,
M.
,
Rooij
,
M. B. D.
,
Valefi
,
M.
, and
Schipper
,
D. J.
,
2017
, “
Numerical Method for the Adhesive Normal Contact Analysis Based on a Dugdale Approximation
,”
Tribol. Int.
,
112
, pp.
117
128
.
13.
Zhang
,
Y. Y.
,
Wang
,
X. L.
,
Tu
,
Q. A.
,
Sun
,
J. J.
, and
Ma
,
C. B.
,
2017
, “
Mechanical Modeling and Characteristic Study for the Adhesive Contact of Elastic Layered Media
,”
J. Phys. D Appl. Phys.
,
50
(
47
), p.
475601
.
14.
Derjaguin
,
B. V.
,
1934
, “
Theorie Des Anhaftens Kleiner Teilchen
,” Kolloid Z.,
69
(
2
), pp.
155
164
.
15.
Muller
,
V. M.
,
Yushchenko
,
V. S.
, and
Derjaguin
,
B. V.
,
1980
, “
On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigid Plane
,”
J. Colloid Interf. Sci.
,
77
(
1
), pp.
91
101
.
16.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
17.
Rentsch
,
S.
,
Pericetcamara
,
R.
,
Papastavrou
,
G.
, and
Borkovec
,
M.
,
2006
, “
Probing the Validity of the Derjaguin Approximation for Heterogeneous Colloidal Particles
,”
Phys. Chem. Chem. Phys.
,
8
(
21
), pp.
2531
2538
.
18.
Si
,
L. N.
,
Wang
,
X. L.
,
Xie
,
G. X.
, and
Sun
,
N.
,
2015
, “
Nano-Adhesion and Friction of Multi-Asperity Contact: A Molecular Dynamics Simulation Study
,”
Surf. Interface Anal.
,
47
(
9
), pp.
919
925
.
19.
Ramakrishna
,
S. N.
,
Nalam
,
P. C.
,
Clasohm
,
L. Y.
, and
Spencer
,
N. D.
,
2012
, “
Study of Adhesion and Friction Properties on a Nanoparticle Gradient Surface: Transition From JKR to DMT Contact Mechanics
,”
Langmuir
,
29
(
1
), pp.
175
182
.
20.
Li
,
Q.
,
Rudolph
,
V.
, and
Peukert
,
W.
,
2006
, “
London-Van Der Waals Adhesiveness of Rough Particles
,”
Powder Technol.
,
161
(
3
), pp.
248
255
.
21.
Yu
,
Y.
,
Gu
,
J.
,
Kang
,
F.
,
Kong
,
X.
, and
Mo
,
W.
,
2007
, “
Surface Restoration Induced by Lubricant Additive of Natural Minerals
,”
Appl. Surf. Sci.
,
253
(
18
), pp.
7549
7553
.
22.
Thoreson
,
E. J.
,
Martin
,
J.
, and
Burnham
,
N. A.
,
2006
, “
The Role of Few-Asperity Contacts in Adhesion
,”
J. Colloid Interf. Sci.
,
298
(
1
), pp.
94
101
.
23.
Chen
,
D.
, and
Bogy
,
D. B.
,
2007
, “
Intermolecular Force and Surface Roughness Models for Air Bearing Simulations for Sub-5 nm Flying Height Sliders
,”
Microsyst. Technol.
,
13
(
8–10
), pp.
1211
1217
.
24.
Ning
,
Y.
, and
Polycarpou
,
A. A.
,
2004
, “
Adhesive Contact Based on the Lennard-Jones Potential: A Correction to the Value of the Equilibrium Distance as Used in the Potential
,”
J. Colloid Interf. Sci.
,
278
(
2
), pp.
428
435
.
25.
Yablon
,
D. G.
,
2013
,
Scanning Probe Microscopy for Industrial Applications: Nanomechanical Characterization
,
Wiley
,
Hoboken, NJ
.
26.
Yan
,
X. L.
,
Wang
,
X. L.
, and
Zhang
,
Y. Y.
,
2014
, “
Influence of Roughness Parameters Skewness and Kurtosis on Fatigue Life Under Mixed Elastohydrodynamic Lubrication Point Contacts
,”
ASME J. Tribol.
,
136
(
3
), p.
031503
.
You do not currently have access to this content.