The present investigation explores the collective outcome of hard particle reinforcement with deep cryogenic treatment (DCT) on wear responses of magnesium metal matrix nanocomposites (MMNC). A multilevel factorial design of experiments with control factors of applied load (20 and 40 N), sliding speed (1.3, 1.7, 2.2, and 3.3 m/s), reinforcement % (0% and 1.5%), and cryogenic treatment (cryogenic-treated and nontreated) was deployed. Around 1.5 wt % WC-reinforced MMNC were fabricated using stir-casting process. DCT was performed at −190 °C with soaking time of 24 h. The dry sliding wear trials were done on pin-on-disk tribometer with MMNC pin and EN8 steel disk for a constant sliding distance of 2 km. The WC reinforcement contributed toward the improvement in wear rate of MMNC appreciably by absorbing the load and frictional heat at all loads and speeds. During DCT of AZ91, the secondary ß-phase (Mg17Al12) was precipitated that enriched the wear resistance, only for the higher load of 40 N. Scanning electron microscope analyses of the cryogenic-treated MMNC ensured the existence of both ß-phase precipitates and WC in the contact area. As a result, the adhesiveness of this pin was lesser, which attributed to the improved wear resistance (approximately 33%) as compared to base alloy. The coefficient of friction was also less for cryogenic-treated MMNC. A regression analysis was made to correlate the control elements and the responses.

References

References
1.
Hirsch
,
J.
,
2014
, “
Recent Development in Aluminium for Automotive Applications
,”
Trans. Nonferrous Met. Soc. China
,
24
(
7
), pp.
1995
2002
.
2.
Hirsch
,
J.
, and
Al-Samman
,
T.
,
2013
, “
Superior Light Metals by Texture Engineering: Optimized Aluminum and Magnesium Alloys for Automotive Applications
,”
Acta Mater.
,
61
(
3
), pp.
818
843
.
3.
You
,
S.
,
Huang
,
Y.
,
Kainer
,
K. U.
, and
Hort
,
N.
,
2017
, “
Recent Research and Developments on Wrought Magnesium Alloys
,”
J. Magnesium Alloys
,
5
(
3
), pp.
239
253
.
4.
Pan
,
F.
,
Yang
,
M.
, and
Chen
,
X.
,
2016
, “
A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys
,”
J. Mater. Sci. Technol.
,
32
(
12
), pp.
1211
1221
.
5.
An
,
J.
,
Li
,
R. G.
,
Lu
,
Y.
,
Chen
,
C. M.
,
Xu
,
Y.
,
Chen
,
X.
, and
Wang
,
L. M.
,
2008
, “
Dry Sliding Wear Behavior of Magnesium Alloys
,”
Wear
,
265
(
1–2
), pp.
97
104
.
6.
Chen
,
T. J.
,
Ma
,
Y.
,
Li
,
B.
,
Li
,
Y. D.
, and
Hao
,
Y.
,
2007
, “
Friction and Wear Properties of Permanent Mould Cast AZ91D Magnesium Alloy
,”
Mater. Sci. Technol.
,
23
(
8
), pp.
937
944
.
7.
Alam
,
M. E.
,
Han
,
S.
,
Nguyen
,
Q. B.
,
Hamouda
,
A. M. S.
, and
Gupta
,
M.
,
2011
, “
Development of New Magnesium Based Alloys and Their Nanocomposites
,”
J. Alloys Compd.
,
509
(
34
), pp.
8522
8529
.
8.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2015
, “
Magnesium-Based Nanocomposites: Lightweight Materials of the Future
,”
Mater. Charact.
,
105
, pp.
30
46
.
9.
Chen
,
Q.
,
Li
,
K.
,
Liu
,
Y.
,
Zhao
,
Z.
,
Tao
,
K.
, and
Zhu
,
Q.
,
2017
, “
Effects of Heat Treatment on the Wear Behavior of Surfacing AZ91 Magnesium Alloy
,”
J. Mater. Res.
,
32
(
11
), pp.
2161
2168
.
10.
Amini
,
K.
,
Akhbarizadeh
,
A.
, and
Javadpour
,
S.
,
2014
, “
Investigating the Effect of Quench Environment and Deep Cryogenic Treatment on the Wear Behavior of AZ91
,”
Mater. Des.
,
54
, pp.
154
160
.
11.
Zhang
,
L.
,
Luo
,
X.
,
Liu
,
J.
,
Leng
,
Y.
, and
An
,
L.
,
2018
, “
Dry Sliding Wear Behavior of Mg-SiC Nanocomposites With High Volume Fractions of Reinforcement
,”
Mater. Lett.
,
228
, pp.
112
115
.
12.
Sankaranarayanan
,
S.
,
Habibi
,
M. K.
,
Jayalakshmi
,
S.
,
Jia Ai
,
K.
,
Almajid
,
A.
, and
Gupta
,
M.
,
2015
, “
Nano-AlN Particle Reinforced Mg Composites: Microstructural and Mechanical Properties
,”
Mater. Sci. Technol.
,
31
(
9
), pp.
1122
1131
.
13.
Singh
,
H.
,
Singh
,
P.
, and
Bhowmick
,
H.
,
2018
, “
Influence of MoS2, H3BO3, and MWCNT Additives on the Dry and Lubricated Sliding Tribology of AMMC–Steel Contacts
,”
ASME J. Tribol.
,
140
(
4
), p.
041801
.
14.
Reyes
,
A.
,
Bedolla
,
E.
,
Perez
,
R.
, and
Contreras
,
A.
,
2016
, “
Effect of Heat Treatment on the Mechanical and Microstructural Characterization of Mg–AZ91E/TiC Composites
,”
Compos. Interfaces
,
24
(
6
), pp.
593
609
.
15.
Meti
,
V. K. V.
,
Shirur
,
S.
,
Nampoothiri
,
J.
,
Ravi
,
K. R.
, and
Siddhalingeshwar
,
I. G.
,
2018
, “
Synthesis, Characterization and Mechanical Properties of AA7075 Based MMCs Reinforced With TiB2 Particles Processed Through Ultrasound Assisted In-Situ Casting Technique
,”
Trans. Indian Inst. Met.
,
71
(
4
), pp.
841
848
.
16.
Ponappa
,
K.
,
Aravindan
,
S.
, and
Venkateswara Rao
,
P.
,
2013
, “
Influence of Y2O3 Particles on Mechanical Properties of Magnesium and Magnesium Alloy (AZ91D)
,”
J. Compos. Mater.
,
47
(
10
), pp.
1231
1239
.
17.
Lekatou
,
A.
,
Karantzalis
,
A. E.
,
Evangelou
,
A.
,
Gousia
,
V.
,
Kaptay
,
G.
,
Gacsi
,
Z.
,
Baumli
,
P.
, and
Simon
,
A.
,
2015
, “
Aluminium Reinforced by WC and TiC Nanoparticles (Ex-Situ) and Aluminide Particles (In-Situ): Microstructure, Wear and Corrosion Behaviour
,”
Mater. Des.
,
65
, pp.
1121
1135
.
18.
Kumar
,
A.
,
Kumar
,
S.
, and
Mukhopadhyay
,
N. K.
,
2018
, “
Introduction to Magnesium Alloy Processing Technology and Development of Low-Cost Stir Casting Process for Magnesium Alloy and Its Composites
,”
J. Magnesium Alloys
,
6
(
3
), pp.
245
254
.
19.
Selvam
,
B.
,
Marimuthu
,
P.
,
Narayanasamy
,
R.
,
Anandakrishnan
,
V.
,
Tun
,
K. S.
,
Gupta
,
M.
, and
Kamaraj
,
M.
,
2014
, “
Dry Sliding Wear Behaviour of Zinc Oxide Reinforced Magnesium Matrix Nano-Composites
,”
Mater. Des.
,
58
, pp.
475
481
.
20.
Nguyen
,
Q. B.
,
Sim
,
Y. H. M.
,
Gupta
,
M.
, and
Lim
,
C. Y. H.
,
2015
, “
Tribology Characteristics of Magnesium Alloy AZ31B and Its Composites
,”
Tribol. Int.
,
82
(
Pt. B
), pp.
464
471
.
21.
Dey
,
A.
, and
Pandey
,
K. M.
,
2015
, “
Magnesium Metal Matrix Composites—Review
,”
Rev. Adv. Mater. Sci.
,
42
(
1
), pp.
58
67
.
22.
Casati
,
R.
, and
Vedani
,
M.
,
2014
, “
Metal Matrix Composites Reinforced by Nano-Particles—A Review
,”
Metals
,
4
(
1
), pp.
65
83
.
23.
Sanchez
,
E.
,
Bannier
,
E.
,
Salvador
,
M. D.
,
Bonache
,
V.
,
Garcia
,
J. C.
,
Morgiel
,
J.
, and
Grzonka
,
J.
,
2010
, “
Microstructure and Wear Behaviour of Conventional and Nanostructured Plasma Sprayed WC–Co Coatings
,”
J. Therm. Spray Technol.
,
19
(
5
), pp.
964
974
.
24.
Yıldız
,
F.
,
2013
, “
Tribological Properties of WC-12Co Coating on AZ91 Magnesium Alloy Fabricated by High Velocity Oxy-Fuel Spray
,”
High Temp. Mater. Processes
,
33
(
1
), pp.
41
48
.
25.
Liu
,
Y.
,
Shao
,
S.
,
Xu
,
C.
,
Yang
,
X.
, and
Lu
,
D.
,
2012
, “
Enhancing Wear Resistance of Mg–Zn–Gd Alloy by Cryogenic Treatment
,”
Mater. Lett.
,
76
, pp.
201
204
.
26.
Asl
,
K. M.
,
Tari
,
A.
, and
Khomamizadeh
,
F.
,
2009
, “
Effect of Deep Cryogenic Treatment on Microstructure, Creep and Wear Behaviors of AZ91 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
523
(
1–2
), pp.
27
31
.
27.
Mehrjou
,
B.
,
Soltani
,
R.
,
Sohi
,
M. H.
,
Torkamany
,
M. J.
,
Valefi
,
Z.
, and
Ghorbani
,
H.
,
2016
, “
Laser Surface Treatment of AZ91 Magnesium Alloy Presprayed With WC–Co
,”
Surf. Eng.
,
32
(
12
), pp.
893
901
.
28.
Chelliah
,
N. M.
,
Sing
,
H.
, and
Surappa
,
M. K.
,
2016
, “
Correlation Between Microstructure and Wear Behavior of AZX915 Mg-Alloy Reinforced With 12 wt% TiC Particles by Stir-Casting Process
,”
J. Magnesium Alloys
,
4
(
4
), pp.
306
313
.
29.
Liang
,
C.
,
Han
,
X.
,
Su
,
T. F.
,
Li
,
C.
, and
An
,
J.
,
2014
, “
Sliding Wear Map for AZ31 Magnesium Alloy
,”
Tribol. Trans.
,
57
(
6
), pp.
1077
1085
.
30.
Ravikumar
,
K.
,
Kiran
,
K.
, and
Sreebalaji
,
V. S.
,
2017
, “
Characterization of Mechanical Properties of Aluminium/Tungsten Carbide Composites
,”
Measurement
,
102
, pp.
142
149
.
31.
Zhao
,
P.
,
Gengb
,
H.
, and
Wang
,
Q.
,
2006
, “
Effect of Melting Technique on the Microstructure and Mechanical Properties of AZ91 Commercial Magnesium Alloy
,”
Mater. Sci. Eng. A
,
429
(
1–2
), pp.
320
323
.
32.
Rzychon
,
T.
,
Szala
,
J.
, and
Kiełbus
,
A.
,
2012
, “
Microstructure, Castability, Microstructural Stability and Mechanical Properties of ZRE1 Magnesium Alloy
,”
Arch. Metall. Mater.
,
57
(
1
), pp.
245
252
.
33.
Gowri Shankar
,
M. C.
,
Jayashree
,
P. K.
,
Shetty
,
R.
,
Kini
,
A.
, and
Sharma
,
S. S.
,
2013
, “
Individual and Combined Effect of Reinforcements on Stir Cast Aluminium Metal Matrix Composites: A Review
,”
Int. J. Curr. Eng. Technol.
,
3
(
3
), pp.
922
934
.http://inpressco.com/wp-content/uploads/2013/08/Paper32922-934.pdf
34.
ASTM
,
2005
, “
Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus
,” ASTM International, West Conshohocken, PA, Standard No. ASTM G99-05.
35.
Dobrzański
,
L. A.
,
Domagała
,
J.
,
Tański
,
T.
,
Klimpel
,
A.
, and
Janicki
,
D.
,
2009
, “
Laser Surface Treatment of Cast Magnesium Alloys
,”
Arch. Mater. Sci. Eng.
,
35
(
2
), pp.
101
106
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.9829&rep=rep1&type=pdf
36.
Mondal
,
A. K.
, and
Kumar
,
S.
,
2009
, “
Dry Sliding Wear Behaviour of Magnesium Alloy Based Hybrid Composites in the Longitudinal Direction
,”
Wear
,
267
(
1–4
), pp.
458
466
.
37.
Mondal
,
A. K.
, and
Kumar
,
S.
,
2014
, “
Dry Sliding Wear Behaviour of Magnesium Alloy Based Hybrid Composites in Transverse Direction
,”
Mater. Sci. Forum
,
783–786
, pp.
1530
1535
.
38.
Menezes
,
P. L.
,
Kishore
, and
Kailas
,
S. V.
,
2006
, “
Influence of Surface Texture on Coefficient of Friction and Transfer Layer Formation During Sliding of Pure Magnesium Pin on 080 M40 (EN8) Steel Plate
,”
Wear
,
261
(
5–6
), pp.
578
591
.
39.
Jin
,
X.
,
Shipway
,
P. H.
, and
Sun
,
W.
,
2015
, “
The Role of Frictional Power Dissipation (as a Function of Frequency) and Test Temperature on Contact Temperature and the Subsequent Wear Behaviour in a Stainless Steel Contact in Fretting
,”
Wear
,
330–331
, pp.
103
111
.
40.
Stott
,
F. H.
,
1998
, “
The Role of Oxidation in the Wear of Alloys
,”
Tribol. Int.
,
31
(
1–3
), pp.
61
71
.
41.
Cho
,
T. Y.
,
Yoon
,
J. H.
,
Kim
,
K. S.
,
Song
,
K. O.
,
Joo
,
Y. K.
,
Fang
,
W.
,
Zhang
,
S. H.
,
Youn
,
S. J.
,
Chun
,
H. G.
, and
Hwang
,
S. Y.
,
2008
, “
A Study on HVOF Coatings of Micron and Nano WC–Co Powders
,”
Surf. Coat. Technol.
,
202
(
22–23
), pp.
5556
5559
.
42.
Stott
,
F. H.
, and
Wood
,
G. C.
,
1978
, “
The Influence of Oxides on the Friction and Wear of Alloys
,”
Tribol. Int.
,
11
(
4
), pp.
211
218
.
43.
Stachowiak
,
G. W.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
4th ed.
,
Butterworth-Heinemann Publications
,
Oxford, UK
, Chap. 10.
44.
Popov
,
V. L.
,
2010
, “
Coulomb's Law of Friction
,”
Contact Mechanics and Friction
,
Springer
,
Berlin
, pp.
133
154
.
45.
Girish
,
B. M.
,
Satish
,
B. M.
,
Sarapure
,
S.
,
Somashekar
,
D. R.
, and
Basawaraj
,
2015
, “
Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials
,”
Tribol. Trans.
,
58
(
3
), pp.
481
489
.
46.
Kondoh
,
K.
,
Tsuzuki
,
R.
, and
Yuasa
,
E.
,
2005
, “
Tribological Properties of Magnesium Matrix Composite Alloys Dispersed With Mg2Si Particles
,”
Adv. Technol. Mater. Mater. Process. J.
,
7
(
1
), pp.
33
36
.
47.
Narayanasamy
,
P. P.
, and
Selvakumar
,
N. N.
,
2017
, “
Effect of Hybridizing and Optimization of TiC on the Tribological Behavior of Mg–MoS2 Composites
,”
ASME J. Tribol.
,
139
(
5
), p.
051301
.
You do not currently have access to this content.