This study presents the prehot corrosion effect on erosion behavior of AISI 446 SS in simulated heat exchanger environment at elevated temperature. Samples were spray deposited using two salt mixture (Na2SO4/NaCl). Subsequently, low-temperature hot corrosion tests were carried out at 550, 650, and 750 °C for 20 h. Chlorination followed by sulfidation was mainly responsible for the passive layer formation during the process of hot corrosion. The prehot corroded samples were subjected to air-jet erosion test using alumina as the erodent, at impact velocity of 100 m/s and flux rate of 4.2 g/min, with variable impingement angles of 30 deg, 60 deg, and 90 deg. The passive layer formed during corrosion underwent detachment of metallic flakes through cracking during the impact of erodent, and was responsible for a significant change in erosion rate. Cutting, plowing, lip formation, and particle embedment were identified as the operative mechanisms during erosion.

References

References
1.
Hancock
,
P.
,
1987
, “
Vanadic and Chloride Attack of Superalloys
,”
Mater. Sci. Technol.
,
3
(
7
), pp.
536
544
.
2.
Liu
,
G.
,
Zhang
,
Y.
,
Ni
,
Z.
, and
Huang
,
R.
,
2016
, “
Corrosion Behavior of Steel Submitted to Chloride and Sulphate Ions in Simulated Concrete Pore Solution
,”
Const. Build. Mater.
,
115
, pp.
1
5
.
3.
Lindberg
,
D.
,
Niemi
,
J.
,
Engblom
,
M.
,
Yrjas
,
P.
,
Laurén
,
T.
, and
Hupa
,
M.
,
2016
, “
Effect of Temperature Gradient on Composition and Morphology of Synthetic Chlorine-Containing Biomass Boiler Deposits
,”
Fuel Process. Technol.
,
141
, pp.
285
298
.
4.
Bellman
,
R.
, Jr.
, and
Levy
,
A.
,
1981
, “
Erosion Mechanism in Ductile Metals
,”
Wear
,
70
(
1
), pp.
1
27
.
5.
Zheng
,
L.
,
Maicang
,
Z.
, and
Jianxin
,
D.
,
2011
, “
Hot Corrosion Behavior of Powder Metallurgy Rene95 Nickel-Based Superalloy in Molten NaCl–Na2SO4 Salts
,”
Mater. Des.
,
32
(
4
), pp.
1981
1989
.
6.
Arivazhagan
,
N.
,
Narayanan
,
S.
,
Singh
,
S.
,
Prakash
,
S.
, and
Reddy
,
G. M.
,
2012
, “
High Temperature Corrosion Studies on Friction Welded Low Alloy Steel and Stainless Steel in Air and Molten Salt Environment at 650 °C
,”
Mater. Des.
,
34
, pp.
459
468
.
7.
Amri
,
J.
,
Gulbrandsen
,
E.
, and
Nogueira
,
R. P.
,
2008
, “
The Effect of Acetic Acid on the Pit Propagation in CO2 Corrosion of Carbon Steel
,”
Elect. Chem. Comm.
,
10
(
2
), pp.
200
203
.
8.
Eliyan
,
F. F.
,
Mahdi
,
E. S.
, and
Alfantazi
,
A.
,
2012
, “
Electrochemical Evaluation of the Corrosion Behaviour of API-X100 Pipeline Steel in Aerated Bicarbonate Solutions
,”
Corr. Sci.
,
58
, pp.
181
191
.
9.
Villarreal
,
J.
,
Laverde
,
D.
, and
Fuentes
,
C.
,
2006
, “
Carbon-Steel Corrosion in Multiphase Slug Flow and CO2
,”
Corr. Sci.
,
48
(
9
), pp.
2363
2379
.
10.
Stack
,
M. M.
, and
Abdulrahman
,
G. H.
,
2012
, “
Mapping Erosion–Corrosion of Carbon Steel in Oil–Water Solutions: Effects of Velocity and Applied Potential
,”
Wear
,
274
, pp.
401
413
.
11.
Zhang
,
G. A.
, and
Cheng
,
Y. F.
,
2009
, “
Electrochemical Corrosion of X65 Pipe Steel in Oil/Water Emulsion
,”
Corr. Sci.
,
51
(
4
), pp.
901
907
.
12.
Macdonald
,
D. D.
, and
Cragnolino
,
G. A.
,
1989
, “
Corrosion of Steam Cycle Materials
,”
The ASME Handbook on Water Technology for Thermal Power Plants
, American Society of Mechanical Engineers, New York, p.
1958
.
13.
Zheng
,
Y.
,
Yao
,
Z.
,
Wei
,
X.
, and
Ke
,
W.
, 1995, “The Synergistic Effect Between Erosion and Corrosion in Acidic Slurry Medium,”
Wear
,
186–187
, pp. 555–561.
14.
Matsumura
,
M.
,
1994
, “
Erosion-Corrosion of Metallic Materials in Slurries
,”
Corr. Rev.
,
12
(
3–4
), pp.
321
340
.https://www.degruyter.com/view/j/corrrev.1994.12.3-4/corrrev.1994.12.3-4.321/corrrev.1994.12.3-4.321.xml
15.
Neville
,
A.
,
Hodgkiess
,
T.
, and
Xu
,
H.
,
1999
, “
An Electrochemical and MicroStructural Assessment of Erosion–Corrosion of Cast Iron
,”
Wear
,
233
, pp.
523
534
.
16.
Barik
,
R. C.
,
Wharton
,
J. A.
,
Wood
,
R. J. K.
,
Tan
,
K. S.
, and
Stokes
,
K. R.
,
2005
, “
Erosion and Erosion–Corrosion Performance of Cast and Thermally Sprayed Nickel–Aluminium Bronze
,”
Wear
,
259
(
1–6
), pp.
230
242
.
17.
Li
,
Y.
,
Burstein
,
G. T.
, and
Hutchings
,
I. M.
,
1995
, “
The Influence of Corrosion on the Erosion of Aluminium by Aqueous Silica Slurries
,”
Wear
,
186–187
, pp.
515
522
.
18.
Postlethwaite
,
J.
,
1981
, “
Effect of Chromate Inhibitor on the Mechanical and Electrochemical Components of Erosion-Corrosion in Aqueous Slurries of Sand
,”
Corrosion
,
37
(
1
), pp.
1
5
.
19.
Neville
,
A.
, and
Hu
,
X.
,
2001
, “
Mechanical and Electrochemical Interactions During Liquid–Solid Impingement on High-Alloy Stainless Steels
,”
Wear
,
251
(
1–12
), pp.
1284
1294
.
20.
Nava
,
J. C.
,
Stott
,
F. H.
, and
Stack
,
M. M.
,
1993
, “
The Effect of Substrate Hardness on the Erosion-Corrosion Resistance of Materials in Low-Velocity Conditions
,”
Corr. Sci.
,
35
(
5–8
), pp.
1045
1051
.
21.
Guimarães
,
A. A.
, and
Mei
,
P. R.
,
2004
, “
Precipitation of Carbides and Sigma Phase in AISI Type 446 Stainless Steel Under Working Conditions
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1681
1689
.
22.
Bhadeshia
,
H.
, and
Honeycombe
,
R.
,
2006
,
Steels: Microstructure and Properties
,
Butterworth-Heinemann
, Oxford, UK, pp.
276
277
.
23.
Tsaur
,
C. C.
,
Rock
,
J. C.
,
Wang
,
C. J.
, and
Su
,
Y. H.
,
2005
, “
The Hot Corrosion of 310 Stainless Steel With Pre-Coated NaCl/Na2SO4 Mixtures at 750 °C
,”
Mater. Chem. Phys.
,
89
(
2–3
), pp.
445
453
.
24.
Li
,
Y.
,
Burstein
,
G. T.
, and
Hutchings
,
I. M.
,
1995
, “
Influence of Environmental Composition and Electrochemical Potential on the Slurry Erosion-Corrosion of Aluminium
,”
Wear
,
181
, pp.
70
79
.
25.
Pradhan
,
D.
,
Mahobia
,
G. S.
,
Chattopadhyay
,
K.
, and
Singh
,
V.
,
2018
, “
Effect of Surface Roughness on Corrosion Behavior of the Superalloy IN718 in Simulated Marine Environment
,”
J. Alloys Compd.
,
740
, pp.
250
263
.
26.
ASTM
,
1995
, “
Standard Practice for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets
,”
Annual Book of ASTM Standards
,
Philadelphia, PA
, Standard No. G76-95.
27.
Mahobia
,
G. S.
,
Paulose
,
N.
, and
Singh
,
V.
,
2013
, “
Hot Corrosion Behavior of Superalloy IN718 at 550 and 650 °C
,”
J. Mater. Eng. Perform.
,
22
(
8
), pp.
2418
2435
.
28.
Shimizu
,
K.
,
Xinba
,
Y.
, and
Araya
,
S.
,
2011
, “
Solid Particle Erosion and Mechanical Properties of Stainless Steels at Elevated Temperature
,”
Wear
,
271
(
9–10
), pp.
1357
1364
.
29.
Finnie
,
I.
,
Stevick
,
G. R.
, and
Ridgely
,
J. R.
,
1992
, “
The Influence of Impingement Angle on the Erosion of Ductile Metals by Angular Abrasive Particles
,”
Wear
,
152
(
1
), pp.
91
98
.
30.
Mishra
,
A.
,
Behera
,
C. K.
,
Mohan
,
S.
, and
Mohan
,
A.
,
2018
, “
Erosive Wear of 446SS Ferritic Steel: A Potential Material for Heat Exchangers Application
,”
Mater. Res. Exp.
,
5
(
10
), p.
106522
.
31.
Badaruddin
,
M.
,
Risano
,
A. Y. E.
,
Wardono
,
H.
, and
Asmi
,
D.
,
2017
, “
Hot-Corrosion of AISI 1020 Steel in a Molten NaCl/Na2SO4 Eutectic at 700 °C
,”
AIP Conf. Proc.
,
1788
, p.
030066
.
32.
Khanna
,
A. S.
,
2002
,
Introduction to High Temperature Oxidation and Corrosion
,
ASM International
,
Russell Township, ON, Canada
.
33.
Cuevas-Arteaga
,
C.
,
2008
, “
Corrosion Study of HK-40 m Alloy Exposed to Molten Sulfate/Vanadate Mixtures Using the Electrochemical Noise Technique
,”
Corr. Sci.
,
50
(
3
), pp.
650
663
.
34.
Kubaschewski
,
O.
, and
Alcock
,
C. B.
,
1989
,
Metallurgical Thermo-Chemistry
,
Pergamon Press
,
New York
.
35.
Choi
,
Y. S.
, and
Kim
,
J. G.
,
2000
, “
Aqueous Corrosion Behavior of Weathering Steel and Carbon Steel in Acid-Chloride Environments
,”
Corrosion
,
56
(
12
), pp.
1202
1210
.
36.
Islam
,
M. A.
,
Farhat
,
Z. N.
,
Ahmed
,
E. M.
, and
Alfantazi
,
A. M.
,
2013
, “
Erosion Enhanced Corrosion and Corrosion Enhanced Erosion of API X-70 Pipeline Steel
,”
Wear
,
302
(
1–2
), pp.
1592
1601
.
You do not currently have access to this content.